Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Advanced Methods of Encapsulation

https://research.thinkwood.com/en/permalink/catalogue41
Year of Publication
2015
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Ranger, Lindsay
Roy-Poirier, Audrey
Organization
FPInnovations
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Fire
Keywords
Codes
Encapsulation
Type X Gypsum Board
National Building Code of Canada
Tall Wood
Language
English
Research Status
Complete
Summary
This project aims to support the construction of tall wood buildings by identifying encapsulation methods that provide adequate protection of mass timber elements; the intention is that these methods could potentially be applied to mass timber elements so that the overall assembly could achive a 2 h fire resistance rating.
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Analytical Models for Balloon-Type CLT Shear Walls

https://research.thinkwood.com/en/permalink/catalogue1877
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Chen, Zhiyong
Cuerrier-Auclair, Samuel
Popovski, Marjan
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Design and Systems
Keywords
Lateral Loads
Shear
Mass Timber
Language
English
Research Status
Complete
Summary
Lack of research and design information for the seismic performance of balloon-type CLT shear walls prevents CLT from being used as an acceptable solution to resist seismic loads in balloon-type mass-timber buildings. To quantify the performance of balloon-type CLT structures subjected to lateral loads and create the research background for future code implementation of balloon-type CLT systems in CSA O86 and NBCC, FPInnovations initiated a project to determine the behaviour of balloon-type CLT construction. A series of tests on balloon-type CLT walls and connections used in these walls were conducted. Analytical models were developed based on engineering principles and basic mechanics to predict the deflection and resistance of the balloon-type CLT shear walls. This report covers the work related to development of the analytical models and the tests on balloon-type CLT walls that the models were verified against.
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Exit Fire Separations in Mid-Rise Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue1879
Year of Publication
2018
Topic
Fire
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Shafts and Chases
Author
Ranger, Lindsay
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Shafts and Chases
Topic
Fire
Keywords
National Building Code of Canada
Combustible Material
Mid-Rise
Noncombustible Construction
Language
English
Research Status
Complete
Summary
FPInnovations initiated this project to demonstrate the ability of wood exit stairs in mid-rise buildings to perform adequately in a fire when NBCC requirements are followed, with the intent of changing perceptions of the fire safety of wood construction. The objective of this research is to investigate further the fire safety afforded by exit stair shafts of combustible construction, with the ultimate objective of better consistency between the provincial and national building codes with respect to fire requirements for exit stair shafts in mid-rise wood-frame construction.
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: In-Situ Testing of The Arbora Building for Vibration and Acoustic Performances

https://research.thinkwood.com/en/permalink/catalogue1179
Year of Publication
2018
Topic
Acoustics and Vibration
Design and Systems
Application
Wood Building Systems
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Application
Wood Building Systems
Topic
Acoustics and Vibration
Design and Systems
Keywords
Sound Insulation
Tall Wood
Vibration Performance
Mid-Rise
Language
English
Research Status
Complete
Summary
This report addresses serviceability issues of tall wood buildings focusing on vibration and sound insulation performance. The sound insulation and vibration performance may not affect building's safety, but affects occupants' comfort and proper operation of the buildings and the funciton of sensitive equipment...
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: In-Situ Testing of the Brock Commons 18-Storey Building for Vibration and Acoustic performances

https://research.thinkwood.com/en/permalink/catalogue1180
Year of Publication
2018
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Acoustics and Vibration
Keywords
Non-Destructive Testing
Vibration Performance
Natural Frequencies
Damping Ratios
Sound Insulation
Ambient Vibration Testing
Apparent Sound Transmission Class
Language
English
Research Status
Complete
Summary
This report addresses serviceability issues of tall wood buildings focusing on their vibration and sound insulation performance. The sound insulation and vibration performance may not affect the building’s safety, but affects the occupants’ comfort and the proper operation of the buildings and the function of sensitive equipment...
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: In-Situ Testing of the Origine 13-Storey Building for Vibration and Acoustic Performances

https://research.thinkwood.com/en/permalink/catalogue1474
Year of Publication
2018
Topic
Acoustics and Vibration
Serviceability
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Topic
Acoustics and Vibration
Serviceability
Keywords
Origine
Natural Frequencies
Damping Ratios
Sound Insulation
Ambient Vibration Tests
Static Deflection
Apparent Sound Transmission Class
Apparent Impact Insulation Class
Language
English
Research Status
Complete
Summary
Serviceability performance studied covers three different performance attributes of a building. These attributes are 1) vibration of the whole building structure, 2) vibration of the floor system, typically in regards to motions in a localized area within the entire floor plate, and 3) sound insulation performance of the wall and floor assemblies. Serviceability performance of a building is important as it affects the comfort of its occupants and the functionality of sensitive equipment as well. Many physical factors influence these performances. Designers use various parameters to account for them in their designs and different criteria to manage these performances. Lack of data, knowledge and experience of sound and vibration performance of tall wood buildings is one of the issues related to design and construction of tall wood buildings. In order to bridge the gaps in the data, knowledge, and experience of sound and vibration performance of tall wood buildings, FPInnovations conducted a three-phase performance testing on the Origine 13-storey CLT building of 40.9 m tall in Quebec city. It was the tallest wood building in Eastern Canada in 2017.
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Mid-Rise Wood Exit Shaft Demonstration Fire Test Report

https://research.thinkwood.com/en/permalink/catalogue1176
Year of Publication
2018
Topic
Fire
Application
Shafts and Chases
Author
Ranger, Lindsay
Dagenais, Christian
Bénichou, Noureddine
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Application
Shafts and Chases
Topic
Fire
Keywords
Mid-Rise
Residential
Multi-Family
Exit Shafts
Language
English
Research Status
Complete
Summary
FPInnovations conducted a research project to study the construction of mid-rise wood exit shafts in Ontario and Québec. The scope of the project included an investigation into the concerns that have been raised in regards to the use of wood exits in mid-rise buildings, an analysis of recent Canadian fire statistics...
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Modelling of Timber Connections Under Force and Fire

https://research.thinkwood.com/en/permalink/catalogue1473
Year of Publication
2018
Topic
Connections
Fire
Seismic
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Chen, Zhiyong
Ni, Chun
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Connections
Fire
Seismic
Design and Systems
Keywords
Finite Element Model
Bolted Connection
Load-Displacement Curves
Language
English
Research Status
Complete
Summary
FPInnovations carried out a survey with consultants and researchers on the use of analytical models and software packages related to the analysis and design of mass timber buildings. The responses confirmed that a lack of suitable models and related information for material properties of timber connections was creating an impediment to the design and construction of this type of buildings. Furthermore, there is currently a lack of computer models and expertise for carrying out performance-based design for wood buildings, in particular seismic and/or fire performance design. In this study, a sophisticated constitutive model for wood-based composite material under stress and temperature was developed. This constitutive model was programmed into a user-subroutine which can be added to most general-purpose finite element software. The developed model was validated with test results of a laminated veneer lumber (LVL) beam and glulam bolted connection under force and/or fire.
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Proposed Vibration-Controlled Design Criterion for Supporting Beams

https://research.thinkwood.com/en/permalink/catalogue1178
Year of Publication
2018
Topic
Acoustics and Vibration
Mechanical Properties
Application
Floors
Author
Hu, Lin
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Application
Floors
Topic
Acoustics and Vibration
Mechanical Properties
Keywords
Floor Supporting Beam
Bending Stiffness
Language
English
Research Status
Complete
Summary
For wood floor systems, their vibration performance is significantly dependent on the conditions of their supports, specifically the rigidity of the support. Detrimental effects could result if the floor supports do not have sufficient rigidity. This is special ture for floor supporting beams. The problem of vibrating floor due to flexible...
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Structural Performance of Post-Tensioned CLT Shear Walls with Energy Dissipators

https://research.thinkwood.com/en/permalink/catalogue1472
Year of Publication
2018
Topic
Design and Systems
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Shear Walls
Author
Chen, Zhiyong
Popovski, Marjan
Symons, Paul
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Shear Walls
Topic
Design and Systems
Mechanical Properties
Seismic
Keywords
Compression Tests
Compression Strength
Energy Dissipation
Post-Tensioned
Pres-Lam
Monotonic Loading
Reverse Cyclic Loading
Language
English
Research Status
Complete
Summary
The latest developments in seismic design philosophy have been geared towards developing of so called "resilient" or "low damage" innovative structural systems that can reduce damage to the structure while offering the same or higher levels of safety to occupants. One such innovative structural system is the Pres-Lam system that is a wood-hybrid system that utilizes post-tensioned (PT) mass timber components in both rigid-frame and wall-based buildings along with various types of energy disspators. To help implement the Pres-Lam system in Canada and the US, information about the system performance made with North American engineered wood products is needed. That information can later be used to develop design guidelines for the designers for wider acceptance of the system by the design community.Several components influence the performance of the Pres-Lam systems: the load-deformation properties of the engineered wood products under compression, load-deformation and energy dissipation properties of the dissipators used, placement of the dissipators in the system, and the level of post-tensioning force. The influence of all these components on the performance of Pres-Lam wall systems under gravity and lateral loads was investigated in this research project. The research project consisted of two main parts: material tests and system tests.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.