Skip header and navigation

24 records – page 1 of 3.

2021 Edition of Technical Guide for the Design and Construction of Tall Wood Buildings in Canada

https://research.thinkwood.com/en/permalink/catalogue2585
Topic
Design and Systems
Application
Wood Building Systems
Organization
FPInnovations
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Structural
Seismic
Fire Performance
Vibration
Acoustics
Building Envelope
Sustainability
Prefabrication
Monitoring
Research Status
In Progress
Notes
Project contact is Erol Karacabeyli at FPInnovations
Summary
To support NRCan's Tall Wood Building Demonstration Initiative, FPInnovations developed and published the 2014 Edition of Technical Guide for the Design and Construction of Tall Wood Buildings in Canada. More than 80 technical professionals comprised of design consultants and experts from FPInnovations, the National Research Council, the Canadian Wood Council and universities were involved in its development. The Guide has gained national and worldwide reputation as one of the most complete and credible documents helping to introduce to the design and construction community, and Authorities Having Jurisdiction the terms "Mass Timber Construction" and "Hybrid Tall Wood Buildings". Since the publication of the First Edition, a number of tall wood buildings have been designed and constructed. Substantial regulatory changes are expected to happen based on the experience obtained from the demonstration initiative and the extensive research that has taken place domestically and internationally since the publication of the First Edition. These developments highlight a need for the Guide to be updated so that it aligns with efforts currently underway nationally and provincially and continues to lead in providing the design and construction community technical insight into new opportunities for building in wood. The First Edition of the Guide helped to focus the efforts of the early adopters who participated in NRCan's Tall Wood Building Demonstration Initiative. Updating and aligning the Guide with the release of the new National Building Code of Canada and the Canadian wood design standard (CSA O86), and sharing the experiences gained from tall wood buildings built since the First Edition, will not only continue to expand the base of early adopters, but also help to move aspects of mass timber and hybrid wood buildings into the mainstream.
Less detail

Comparisons of the Production Standards for Cross Laminated Timber (CLT) in Europe versus USA

https://research.thinkwood.com/en/permalink/catalogue1705
Year of Publication
2016
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Author
Young, Timothy
Barbu, Marius
Hindman, Daniel
Weissensteiner, Josef
Tudor, Eugenia
Year of Publication
2016
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Market and Adoption
Keywords
Europe
North America
Manufacturing
Standards
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4412-4419
Summary
Cross laminated timber (CLT) is a new engineered wood product that has experienced rapid growth and market acceptance for residential and non-residential construction in western and central Europe. Potential exists for rapid market adoption in North America if manufacturing capacities are developed. Dissemination of information on CLT North America markets, manufacturing capabilities, and product standards are the next key steps for facilitating investment in CLT manufacturing capacities in North America. This paper compares standards for CLT between Europe and North America.
Online Access
Free
Resource Link
Less detail

Compartment Fire Testing of a Two-Story Mass Timber Building

https://research.thinkwood.com/en/permalink/catalogue1825
Year of Publication
2018
Topic
Fire
Application
Wood Building Systems
Author
Zelinka, Samuel
Hasburgh, Laura
Bourne, Keith
Tucholski, David
Ouellette, Jason
Organization
Forest Products Laboratory
Year of Publication
2018
Format
Report
Application
Wood Building Systems
Topic
Fire
Keywords
Tall Wood
Gypsum
Mass Timber
Fire Performance
Compartment Fire Test
Sprinklers
Research Status
Complete
Summary
Five full-scale fire experiments were conducted to observe the performance of a two-level apartment-style structure constructed of mass timber. Each level consisted of a one bedroom apartment, an L-shaped corridor, and a stairwell connecting the two levels. One of the primary variables considered in this test series was the amount and location of exposed mass timber. The amount of mass timber surface area protected by gypsum wallboard ranged from 100% to no protection. For each experiment, the fuel load was identical and the fire was initiated in a base cabinet in the kitchen. In the first three experiments, the fire reached flashover conditions, and subsequently underwent a cooling phase as the fuel load from combustible contents was consumed. The first three experiments were carried out for a duration of up to 4 h. In the fourth experiment, automatic fire sprinklers were installed. Sprinklers suppressed the fire automatically. In the fifth experiment, the activation of the automatic fire sprinklers was delayed by approximately 20 minutes beyond the sprinkler activation time in the fourth experiment to simulate responding fire service charging a failed sprinkler water system. A variety of instrumentation was used during the experiments, including thermocouples, bidirectional probes, optical density meters, heat flux transducers, directional flame thermometers, gas analyzers, a fire products collector, and residential smoke alarms. In addition, the experiments were documented with digital still photography, video cameras, and a thermal imaging camera. The experiments were conducted in the large burn room of the Bureau of Alcohol, Tobacco, Firearms and Explosives Fire Research Laboratory located in Beltsville, Maryland, USA. This report provides details on how each experiment was set up, how the experiments were conducted, and the instrumentation used to collect the data. A brief summary of the test results is also included. Detailed results and full data for each test are included in separate appendices.
Online Access
Free
Resource Link
Less detail

Considerations for Detailing the Closure Penetration and Gypsum Fire Separation Wall Interface

https://research.thinkwood.com/en/permalink/catalogue2755
Year of Publication
2015
Topic
Fire
Material
Other Materials
Application
Walls
Author
Lum, Conroy
Organization
FPInnovations
Year of Publication
2015
Format
Report
Material
Other Materials
Application
Walls
Topic
Fire
Keywords
Gypsum
Fire Separation Walls
Fire Doors
Closure Penetration
Fire Performance
Fire Test
Research Status
Complete
Summary
Vertical gypsum fire separation walls that have fire-resistive ratings evaluated in accordance with a recognized standard are permitted for use in building construction. When approved doors are inserted in such walls, the details must be presented for consideration as an “alternative solution”. This guide is based on observations of two CAN/ULC S101 (ULC, 2007) tests on gypsum fire separation walls with S104 (ULC, 2010) approved closure penetrations. The guidance is intended to direct the designer’s attention to potential issues that might impact the performance of a closure penetration in a gypsum separation wall that use a thick wood-based sheathing (i.e. combustible) for carrying the weight of the fire door assembly. General guidance is provided on sizing the sheathing and the need for protecting the sheathing from fire, yet permitting the assembly to accommodate building movements in-service. The purpose of this guide is to recommend considerations when designing the interface between a fire door (closure penetration) in proprietary gypsum separation walls. These considerations form only part of the alternative solution that will need to be presented to the AHJ for approval. Although details are provided in Appendix VI to illustrate a possible solution, it is the responsibility of the designer to understand how the design is expected to perform. The guide discusses three scenarios to assist the designer in formulating an appropriate solution. These are performance under an extreme fire; performance under a limited fire; and performance under normal (non-fire) service conditions that may include high wind or high seismic event.
Online Access
Free
Less detail

Demonstration of Fire Performance of Durable Wood Strand Mass Timber Panels

https://research.thinkwood.com/en/permalink/catalogue2573
Topic
Fire
Material
Other Materials
Organization
Washington State University
University of Minnesota Duluth
Material
Other Materials
Topic
Fire
Keywords
Wood Strand Mass Timber Panel
Thermal Modification
Fire Performance
ASTM E119 test standard
Research Status
In Progress
Notes
Project contact is Vikram Yadama at Washington State University
Summary
Lumber yields from small diameter timber (SDT), such as ponderosa and lodge pole pine and grand fir, proposed in this study, are significantly lower (
Less detail

Design and Dimensioning of a Complex Timber-Glass Hybrid Structure: The IFAM Pedestrian Bridge

https://research.thinkwood.com/en/permalink/catalogue1797
Year of Publication
2016
Topic
Design and Systems
Material
Timber-Glass Composite
Application
Bridges and Spans
Hybrid Building Systems
Wood Building Systems
Author
Vallée, Till
Grunwald, Cordula
Milchert, Lena
Fecht, Simon
Publisher
Springer International Publishing
Year of Publication
2016
Format
Journal Article
Material
Timber-Glass Composite
Application
Bridges and Spans
Hybrid Building Systems
Wood Building Systems
Topic
Design and Systems
Keywords
Joint
Bonding
Standards
Codes
Adhesive Connection
Research Status
Complete
Series
Glass Structures & Engineering
Summary
Research has repeatedly pointed out the suitability of adhesive bonding to substitute to “traditional” joining techniques for numerous materials and loads, including timber to glass. Practitioners, however, are still reluctant to implement them into their designs. Adhesion as a method of joining, particularly in the context of hybrid structures, presupposes knowledge of all involved materials, including codes and procedures; most practitioners however tend to be focused on just a subset of materials. While such specialization is not unusual, it makes it challenging to implement novelty (i.e. new materials or techniques). Additionally, when it comes to adhesion where most of the knowledge has been generated by chemists, the lines become even more blurred. Taking the example of a pedestrian timber-glass bridge, this research shows how design and dimensioning of complex bonded hybrid structures can be performed in accordance with “traditional” engineering practice. The paper guides through every step, from the first concepts to the final design, including the manufacturing, of a relatively complex structure, in which timber and glass act together as equivalent members. The compliance of this process with engineering models is emphasized, and the embedment into existing codes and standards is sought after to ensure acceptancy by practitioners.
Online Access
Free
Resource Link
Less detail

Development of Southern Pine Cross-Laminated Timber for Building Code Acceptance

https://research.thinkwood.com/en/permalink/catalogue474
Year of Publication
2014
Topic
Acoustics and Vibration
Fire
Mechanical Properties
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Author
Hindman, Daniel
Bouldin, John
Year of Publication
2014
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Acoustics and Vibration
Fire
Mechanical Properties
Market and Adoption
Keywords
Southern Pine
Fire Performance
Acoustical Performance
International Building Code
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The current interest and growth of cross laminated timber (CLT) products has spurred interest in the manufacture of CLTs in the United States. The purpose of this paper is to explore the development of CLT materials from southern pine lumber commonly available in Virginia. A 5-layer CLT panel has been constructed using No. 2 southern pine lumber. Evaluation of mechanical properties, fire performance and acoustical performance were conducted. Results of these evaluations can guide the development and acceptance of CLT products in the International Building Code.
Online Access
Free
Resource Link
Less detail

Effect of Adhesives and Ply Configuration on the Fire Performance of Southern Pine Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue1682
Year of Publication
2016
Topic
Connections
Fire
Material
CLT (Cross-Laminated Timber)
Author
Hasburgh, Laura
Bourne, Keith
Peralta, Perry
Mitchell, Phil
Schiff, Scott
Pang, Weichiang
Year of Publication
2016
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Fire
Keywords
Southern Pine
Adhesives
Ply Configuration
Fire Performance
Melamine Formaldehyde
Phenol-Resorcinol Formaldehyde
Polyurethane
Emulsion Polymer Isocyanate
Delamination
Char Rate
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4031-4038
Summary
Thirteen Southern pine cross-laminated timber panels were tested in the intermediate scale horizontal furnace at the Forest Products Laboratory to determine the effects different adhesives and ply configuration had on fire performance. Four different adhesives were tested: melamine formaldehyde (MF), phenol resorcinol formaldehyde (PRF), polyurethane reactive (PUR), and emulsion polymer isocyanate (EPI). There were two ply configurations: Long-Cross-Long (LCL) or Long-Long-Cross (LLC) where “long” indicates the wood was parallel to the longer edge of the panel. The MF and the PRF prevented delamination and associated problems while the LLC configuration resulted in uneven charring patterns.
Online Access
Free
Resource Link
Less detail

Elevated Temperature Effects on the Shear Performance of a Cross-Laminated Timber (CLT) Wall-to-Floor Bracket Connection

https://research.thinkwood.com/en/permalink/catalogue2106
Year of Publication
2019
Topic
Fire
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors

Fire Performance of Metal-Free Timber Connections

https://research.thinkwood.com/en/permalink/catalogue2186
Year of Publication
2015
Topic
Fire
Connections
Material
LVL (Laminated Veneer Lumber)
CLT (Cross-Laminated Timber)
Other Materials
Application
Wood Building Systems
Beams
Columns
Trusses

24 records – page 1 of 3.