Skip header and navigation

66 records – page 1 of 7.

Advanced Modelling of Cross Laminated Timber (CLT) Panels in Bending

https://research.thinkwood.com/en/permalink/catalogue1796
Year of Publication
2015
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Franzoni, Lorenzo
Lebée, Arthur
Lyon, Florent
Forêt, Gilles
Publisher
HAL archives-ouvertes.fr
Year of Publication
2015
Country of Publication
Germany
Format
Presentation
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Mechanical Properties
Keywords
Bending
Model
Panels
Shear
Stiffness
Failure Behavior
Shear Force
Reference Test
Language
English
Conference
Euromech Colloquim 556 Theoretical Numerical and Experimental Analyses of Wood Mechanics
Research Status
Complete
Notes
May 2015, Dresde, Germany
Online Access
Free
Resource Link
Less detail

An Algorithm for Numerical Modelling of Cross-Laminated Timber Structures

https://research.thinkwood.com/en/permalink/catalogue2362
Year of Publication
2015
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
D'Aronco, Gabriele
Publisher
Università di Padova
Year of Publication
2015
Country of Publication
Italy
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Connections
Panels
Model
Language
English
Research Status
Complete
Summary
Cross-laminated timber, also known as X-Lam or CLT, is well established in Europe as a construction material. Recently, implementation of X-Lam products and systems has begun in countries such as Canada, United States, Australia and New Zealand. So far, no relevant design codes for X-Lam construction were published in Europe, therefore an extensive research on the field of cross-laminated timber is being performed by research groups in Europe and overseas. Experimental test results are required for development of design methods and for verification of design models accuracy. This thesis is part of a large research project on the development of a software for the modelling of CLT structures, including analysis, calculation, design and verification of connections and panels. It was born as collaboration between Padua University and Barcelona"s CIMNE (International Centre for Numerical Methods in Engineering). The research project started with the thesis “Una procedura numerica per il progetto di edifici in Xlam” by Massimiliano Zecchetto, which develops a software, using MATLAB interface, only for 2D linear elastic analysis. Follows the phase started in March 2015, consisting in extending the 2D software to a 3D one, with the severity caused by modelling in three dimensions. This phase is developed as a common project and described in this thesis and in “Pre-process for numerical analysis of Cross Laminated Timber Structures” by Alessandra Ferrandino. The final aim of the software is to enable the modelling of an X-Lam structure in the most efficient and reliable way, taking into account its peculiarities. Modelling of CLT buildings lies into properly model the connections between panels. Through the connections modelling, the final aim is to enable the check of preliminarily designed connections or to find them iteratively, starting from hypothetical or random connections. This common project develops the pre-process and analysis phases of the 3D software that allows the automatic modelling of connections between X-Lam panels. To achieve the goal, a new problem type for GiD interface and a new application for KRATOS framework have been performed. The problem type enables the user to model a CLT structure, starting from the creation of the geometry and the assignation of numeric entities (beam, shell, etc.) to geometric ones, having defined the material, and assigning loads and boundary conditions. The user does not need to create manually the connections, as conversely needs for all commercial FEM software currently available; he just set the connection properties to the different sides of the panels. The creation of the connections is made automatically, keeping into account different typologies of connections and assembling of Cross-Lam panels. The problem type is special for XLam structures, meaning that all features are intentionally studied for this kind of structures and the software architecture is planned for future developments of the postprocess phase. It can be concluded that sound bases for the pre-process and analysis phases of the software have been laid. However, future research is required to develop the postprocess and verification phases of the research project.
Online Access
Free
Resource Link
Less detail

Analytical Procedures for Determining Stiffness of CLT Elements in Bending

https://research.thinkwood.com/en/permalink/catalogue1862
Year of Publication
2012
Topic
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls

An Evaluation of Strength Performance of the Edge Connections between Cross-laminated Timber Panels Reinforced with Glass Fiber-reinforced Plastic

https://research.thinkwood.com/en/permalink/catalogue2424
Year of Publication
2019
Topic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Bending, Shear, and Compressive Properties of Three- and Five-Layer Cross-Laminated Timber Fabricated with Black Spruce

https://research.thinkwood.com/en/permalink/catalogue2589
Year of Publication
2020
Topic
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
He, Minjuan
Sun, Xiaofeng
Li, Zheng
Feng, Wei
Publisher
SpringerOpen
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Design and Systems
Mechanical Properties
Keywords
Black Spruce
Panels
Bending
Thickness
Language
English
Research Status
Complete
Series
Journal of Wood Science
Summary
Cross-laminated timber (CLT) is an innovative engineering wood product made by gluing layers of solid-sawn lumber at perpendicular angles. The commonly used wood species for CLT manufacturing include spruce-pine-fir (SPF), douglas fir-larch, and southern pine lumber. With the hope of broadening the wood species for CLT manufacturing, the purposes of this study include evaluating the mechanical properties of black spruce CLT and analyzing the influence of CLT thickness on its bending or shear properties. In this paper, bending, shear, and compressive tests were conducted respectively on 3-layer CLT panels with a thickness of 105 mm and on 5-layer CLT panels with a thickness of 155 mm, both of which were fabricated with No. 2-grade Canadian black spruce. Their bending or shear resisting properties as well as the failure modes were analyzed. Furthermore, comparison of mechanical properties was conducted between the black spruce CLT panels and the CLT panels fabricated with some other common wood species. Finally, for both the CLT bending panels and the CLT shear panels, their numerical models were developed and calibrated with the experimental results. For the CLT bending panels, results show that increasing the CLT thickness whilst maintaining identical span-to-thickness ratios can even slightly reduce the characteristic bending strength of the black spruce CLT. For the CLT shear panels, results show that increasing the CLT thickness whilst maintaining identical span-to-thickness ratios has little enhancement on their characteristic shear strength. For the CLT bending panels, their effective bending stiffness based on the Shear Analogy theory can be used as a more accurate prediction on their experiment-based global bending stiffness. The model of the CLT bending specimens is capable of predicting their bending properties; whereas, the model of the CLT shear specimens would underestimate their ultimate shear resisting capacity due to the absence of the rolling shear mechanism in the model, although the elastic stiffness can be predicted accurately. Overall, it is attested that the black spruce CLT can provide ideal bending or shear properties, which can be comparable to those of the CLT fabricated with other commonly used wood species. Besides, further efforts should focus on developing a numerical model that can consider the influence of the rolling shear mechanism.
Online Access
Free
Resource Link
Less detail

Blast Testing of Loaded Cross-Laminated Timber Structures

https://research.thinkwood.com/en/permalink/catalogue1234
Year of Publication
2018
Topic
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Weaver, Mark
Newberry, Charles
Podesto, Lisa
O’Laughlin, Casey
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2018
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Mechanical Properties
Design and Systems
Keywords
Blast Tests
Airblast Loads
Axial Load
Panels
Load Distribution
Quasi-Static
Language
English
Conference
Structures Conference 2018
Research Status
Complete
Notes
April 19–21, 2018, Fort Worth, Texas
Summary
Results from a series of blast tests performed in October 2016 on three two-story, single-bay cross-laminated timber (CLT) structures demonstrated the ability of CLT construction to resist airblast loads in a predictable fashion. These tests were performed on structures without superimposed load to limit inertial resistance. Subsequently, a follow-on series of tests...
Online Access
Payment Required
Resource Link
Less detail

Checking in CLT Panels: An Exploratory Study

https://research.thinkwood.com/en/permalink/catalogue2625
Year of Publication
2011
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Author
Casilla, Romulo
Lum, Conroy
Pirvu, Ciprian
Wang, Brad
Organization
FPInnovations
Year of Publication
2011
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Moisture
Keywords
Panels
Testing Methods
Surface Checks
Moisture Content
Gaps
Language
English
Research Status
Complete
Summary
A study was conducted with the primary objective of gathering information for the development of a protocol for evaluating the surface quality of cross-laminated timber (CLT) products. The secondary objectives were to examine the effect of moisture content (MC) reduction on the development of surface checks and gaps, and find ways of minimizing the checking problems in CLT panels. The wood materials used for the CLT samples were rough-sawn Select grade Hem-Fir boards 25 x 152 mm (1 x 6 inches). Polyurethane was the adhesive used. The development of checks and gaps were evaluated after drying at two temperature levels at ambient relative humidity (RH). The checks and gaps, as a result of drying to 6% to 10% MC from an initial MC of 13%, occurred randomly depending upon the characteristics of the wood and the manner in which the outer laminas were laid up in the panel. Suggestions are made for minimizing checking and gap problems in CLT panels. The checks and gaps close when the panels are exposed to higher humidity. Guidelines were proposed for the development of a protocol for classifying CLT panels into appearance grades in terms of the severity of checks and gaps. The grades can be based on the estimated dimensions of the checks and gaps, their frequency, and the number of laminas in which they appear.
Online Access
Free
Resource Link
Less detail

Commentary on Closure Penetration Tests on CLT Fire Separations

https://research.thinkwood.com/en/permalink/catalogue2602
Year of Publication
2017
Topic
Fire
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Lum, Conroy
Thomas, Tony
Organization
FPInnovations
Year of Publication
2017
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Fire
Design and Systems
Keywords
Fire Resistance
Fire Tests
Panels
Language
English
Research Status
Complete
Summary
Fire tests on a double egress fire door installed in two Cross Laminated Timber (CLT) wall panels were conducted. The purpose of the testing was to identify design consideration for detailing the interface between a 90 min. listed door assembly and a CLT wall with a 2-hr fire resistance. See also QAI Laboratories test reports: T895-6a Rev.2, and T895-6b Rev. 1
Online Access
Free
Resource Link
Less detail

Comparison of Bending Stiffness of Cross-Laminated Solid Timber Derived by Modal Analysis of Full Panels and by Bending Tests of Strip-Shaped Specimens

https://research.thinkwood.com/en/permalink/catalogue445
Year of Publication
2012
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Steiger, René
Gülzow, Arne
Czaderski, Christoph
Howald, Martin
Niemz, Peter
Publisher
Springer-Verlag
Year of Publication
2012
Country of Publication
Germany
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Elastic Properties
Stiffness Properties
Bending Test
Bending Stiffness
Panels
Language
English
Research Status
Complete
Series
European Journal of Wood and Wood Products
ISSN
1436-736X
Online Access
Free
Resource Link
Less detail

Computational Modelling of Cross-Laminated Timber Panels

https://research.thinkwood.com/en/permalink/catalogue2421
Year of Publication
2019
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Floors

66 records – page 1 of 7.