Skip header and navigation

6 records – page 1 of 1.

Embodied Carbon Pilot Phase 2

https://research.thinkwood.com/en/permalink/catalogue2552
Topic
Environmental Impact
Application
Wood Building Systems
Country of Publication
Canada
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
Embodied Carbon
Mid-Rise
Multi-Family
Research Status
In Progress
Notes
Project contact is Angelique Pilon at the University of British Columbia
Summary
The pilot uses whole-building life cycle assessments (WBLCA) to identify major contributors to embodied carbon impacts. More importantly, the project conducts a critical analysis of the procedural requirements, information gaps, systemic barriers and other challenges for project teams seeking to use LCA as an effective tool in reducing their environmental impacts. The second phase of the Embodied Carbon Pilot project builds on the experiences and learning of Phase 1 while addressing a more common and replicable building typology. The first year, we used mass timber buildings at the University of British Columbia for the pilot LCAs and developed a protocol/strategy for adapting project information into the appropriate bill-of-materials (BOM) format for input into LCA tools, while identifying procedural challenges and barriers and variations of different material take-off methodologies and LCA tools. This second year, we will target mid-rise, multi-unit residential buildings (MURBs), a common and growing building type throughout British Columbia. Mid-rise MURBS are between 4 and 8 stories and typically use wood as one of the primary construction materials: stick-frame construction for projects under 6-stories or an increasing number of mass timber projects.
Less detail

Guide for Designing Energy-Efficient Building Enclosures for Wood-Frame Multi-Unit Residential Buildings in Marine to Cold Climate Zones in North America

https://research.thinkwood.com/en/permalink/catalogue2620
Year of Publication
2013
Topic
Energy Performance
Design and Systems
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Author
Finch, Graham
Wang, J.
Ricketts, D.
Organization
FPInnovations
Year of Publication
2013
Format
Guide
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Topic
Energy Performance
Design and Systems
Keywords
Thermal Performance
Multi-Family
Residential Buildings
Energy Efficiency
Building Code
Language
English
Research Status
Complete
Summary
The Guide for Designing Energy-Efficient Building Enclosures for Wood-Frame Multi-Unit Residential Buildings in Marine to Cold Climate Zones in North America was developed by FPInnovations in collaboration with RDH Building Engineering Ltd., the Homeowner Protection Office, Branch of BC Housing, and the Canadian Wood Council. The project is part of efforts within the Advanced Building Systems Program of FPInnovations to assemble and add to the knowledge base regarding Canadian wood products and building systems. The team of the Advanced Building Systems Program works with members and partners of FPInnovations to address critical technical issues that threaten existing markets for wood products or which limit expansion or access to such new markets. This guide was developed in response to the rapidly changing energy-efficiency requirements for buildings across Canada and the United States. This guide serves two major objectives: To assist architects, engineers, designers and builders in improving the thermal performance of building enclosures of wood multi-unit residential buildings (MURBs), in response to the increasingly stringent requirements for the energy efficiency of buildings in the marine to cold climate zones in North America (U.S. DOE/ASHRAE and NECB Climate Zones 5 through 7 and parts of Zone 4); To advance MURB design practices, construction practices, and material use based on best knowledge, in order to ensure the durable performance of wood-frame building enclosures that are insulated to higher levels than traditional wood-frame construction. The major requirements for thermal performance of building enclosures are summarized (up to February 2013), including those for the following codes and standards: 2011 National Energy Code of Canada for Buildings (2011 NECB); 2013 interim update of the 2010 National Building Code of Canada (2010 NBC, Section 9.36–Energy Efficiency); 2012 International Energy Conservation Code (2012 IECC); American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 90.1– Energy Standard for Buildings Except Low-Rise Residential Buildings (2004, 2007, and 2010 versions). In addition to meeting the requirements of the various building codes and standards, a building may need to incorporate construction practices that reflect local preferences in material use, design and construction. Regional climate differences will also affect design solutions. This guide primarily addresses above-grade walls, below-grade walls and roofs of platform wood-frame construction. It also includes information regarding thermal performance of cross-laminated timber (CLT) assemblies as well as the use of non-bearing wood-frame exterior walls (infill walls) in wood post-and-beam and concrete structures. Examples of thermal resistance calculations, building assemblies, critical interface detailing, and appropriate material selection are provided to help guide designers and builders meet the requirements of the various energy-efficiency codes and standards, achieve above-code performance, and ensure long-term durability. This guide builds on the fundamentals of building science and on information contained within the Building Enclosure Design Guide: Wood-Frame Multi-Unit Residential Buildings, published by the Homeowner Protection Office, Branch of BC Housing. This guide is based on the best current knowledge and future updates are anticipated. The guide is not intended to be a substitute for professional advice that considers specific building parameters.
Online Access
Free
Resource Link
Less detail

Life Cycle Analysis of Cross Laminated Timber in Buildings: A Review

https://research.thinkwood.com/en/permalink/catalogue2141
Year of Publication
2019
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Report Summary: A Comparative Life Cycle Assessment of Two Multistory Residential Buildings: Cross-Laminated Timber vs. Concrete Slab and Column with Light Gauge Steel Walls

https://research.thinkwood.com/en/permalink/catalogue2612
Year of Publication
2013
Topic
Environmental Impact
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Grann, Blane
Organization
FPInnovations
Year of Publication
2013
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Design and Systems
Keywords
Life-Cycle Assessment
LCA
Concrete
Multi-Family
Language
English
Research Status
Complete
Summary
This short report summarizes a life cycle assessment (LCA) study comparing a cross-laminated timber mid-rise building to the same building in concrete1. For more detail, refer to the original report which was the product of a rigorous, comparative LCA research project that complied with the international LCA standard ISO 14040:2006. In that study an apartment building in Quebec City, Canada was analyzed using two different building systems in order to understand the environmental footprint of each relative to the other. A LCA model was developed for a real, 4060 m2, 4-storey, cross-laminated timber (CLT) apartment building. The same building was then designed using reinforced concrete slabs and columns with light gauge steel stud walls. That design was intended as a building system that CLT would likely be compared with in the midrise construction market where CLT is likely to compete.
Online Access
Free
Resource Link
Less detail

Report Summary: A Comparative Life Cycle Assessment of Two Multistory Residential Buildings: Cross-Laminated Timber vs. Concrete Slab and Column with Light Gauge Steel Walls

https://research.thinkwood.com/en/permalink/catalogue2643
Year of Publication
2013
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Grann, Blane
Organization
FPInnovations
Year of Publication
2013
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
Life Cycle Analysis
LCA
Mid-Rise
Multi-Family
Residential Buildings
Concrete
Steel
Language
English
Research Status
Complete
Summary
This short report summarizes a life cycle assessment (LCA) study comparing a cross-laminated timber mid-rise building to the same building in concrete1. For more detail, refer to the original report which was the product of a rigorous, comparative LCA research project that complied with the international LCA standard ISO 14040:2006. In that study an apartment building in Quebec City, Canada was analyzed using two different building systems in order to understand the environmental footprint of each relative to the other. A LCA model was developed for a real, 4060 m2, 4-storey, cross-laminated timber (CLT) apartment building. The same building was then designed using reinforced concrete slabs and columns with light gauge steel stud walls. That design was intended as a building system that CLT would likely be compared with in the midrise construction market where CLT is likely to compete.
Online Access
Free
Resource Link
Less detail

UK Experience of the Use of Timber as a Low Embodied Carbon Structural Material

https://research.thinkwood.com/en/permalink/catalogue2140
Year of Publication
2014
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems

6 records – page 1 of 1.