Skip header and navigation

57 records – page 1 of 6.

Ability of Finger-Jointed Lumber to Maintain Load at Elevated Temperatures

https://research.thinkwood.com/en/permalink/catalogue1832
Year of Publication
2018
Topic
Fire
Material
Other Materials
Author
Rammer, Douglas
Zelinka, Samuel
Hasburgh, Laura
Craft, Steven
Publisher
Forest Products Laboratory
Year of Publication
2018
Country of Publication
United States
Format
Journal Article
Material
Other Materials
Topic
Fire
Keywords
Small Scale
Full Scale
Bending Test
Melamine Formaldehyde
Phenol-Resorcinol Formaldehyde
Creep
Polyurethane
Polyvinyl Acetate
Temperature
Durability
Language
English
Research Status
Complete
Series
Wood and Fiber Science. 50(1): 44-54.
Online Access
Free
Resource Link
Less detail

Ambient and Forced Vibration Testing and Finite Element Model Updating of a Full-Scale Posttensioned Laminated Veneer Lumber Building

https://research.thinkwood.com/en/permalink/catalogue1103
Year of Publication
2012
Topic
Seismic
Wind
Acoustics and Vibration
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Shear Walls
Author
Worth, Margaret
Omenzetter, Piotr
Morris, Hugh
Year of Publication
2012
Country of Publication
New Zealand
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Shear Walls
Topic
Seismic
Wind
Acoustics and Vibration
Keywords
Post-Tensioned
Full Scale
In Situ
Finite Element Model
Dynamic Performance
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 13-15, 2012, Christchurch, New Zealand
Summary
The Nelson Marlborough Institute of Technology Arts and Media building was completed in 2011 and consists of three seismically separate complexes. This research focussed on the Arts building as it showcases the use of coupled post-tensioned timber shear walls. These are part of the innovative Expan system. Full-scale, in-situ dynamic testing of the novel building was combined with finite element modelling and updating to obtain an understanding of the structural dynamic performance within the linear range. Ambient testing was performed at three stages during construction and was combined with forced vibration testing for the final stage. This forms part of a larger instrumentation program developed to investigate the wind and seismic response and long term deformations of the building. A finite element model of the building was formulated and updated using experimental modal characteristics. It was shown that the addition of non-structural elements, such as cladding and the staircase, increased the natural frequency of the first mode and the second mode by 19% and 24%, respectively. The addition of the concrete floor topping as a structural diaphragm significantly increased the natural frequency of the first mode but not the second mode, with an increase of 123% and 18%, respectively. The elastic damping of the NMIT building at low-level vibrations was identified as being between 1.6% and 2.4%
Online Access
Free
Resource Link
Less detail

Analysis of Full-Scale Fire-Resistance Tests of Structural Composite Lumber Beams

https://research.thinkwood.com/en/permalink/catalogue366
Year of Publication
2014
Topic
Fire
Material
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Beams
Author
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Beams
Topic
Fire
Keywords
Encapsulation
Type X Gypsum Board
Fire Resistance
Full Scale
Language
English
Research Status
Complete
Summary
The key objective of this study is to analyze full-scale fire-resistance tests conducted on structural composite lumber (SCL), namely laminated veneer lumber (LVL), parallel strand lumber (PSL) and laminated strand lumber (LSL). A sub-objective is to evaluate the encapsulation performance of Type X gypsum board directly applied to SCL beams and its contribution to fire-resistance of wood elements. The test data is being used to further support the applicability of the newly developed Canadian calculation method for mass timber elements, recently implemented as Annex B of CSA O86-14.
Online Access
Free
Resource Link
Less detail

Benchmarking of the Advanced Hygrothermal Model HygIRC – Large Scale Drying Experiment of the Mid-Rise Wood Frame Assembly

https://research.thinkwood.com/en/permalink/catalogue349
Year of Publication
2014
Topic
Design and Systems
Moisture
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Maref, Wahid
Saber, Hamed
Ganapathy, Gnanamurugan
Abdulghani, Khaled
Nicholls, Mike
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Design and Systems
Moisture
Keywords
Drying Rate
Full Scale
Hygrothermal
Mid-Rise
Moisture Content
Construction Phase
Language
English
Research Status
Complete
Summary
Recent research in the field of assessment of hygrothermal response has focused on either laboratory experimentation or modelling, but less work has been reported in which both aspects are combined. Such type of studies can potentially offer useful information regarding the benchmarking of models and related methods to assess hygrothermal performance of wall assemblies. This report documents the experimental results of a benchmark experiment that was designed to allow benchmarking of stud drying predicted by NRC’s an advanced hygrothermal computer model called hygIRC, when subjected to nominally steady-state environmental conditions. hygIRC uses hygrothermal properties of materials derived from tests on small-scale specimens undertaken in the laboratory. The drying rates of wall assembly featuring wet studs that result from moisture accumulated during the framing stage of a 5 or 6 storey building. The drying rate of those studs was assessed in an experiment undertaken in a controlled laboratory setting. The results were subsequently used to help benchmark hygIRC reported under separate cover.
Online Access
Free
Resource Link
Less detail

Butt-Joint Bonding of Timber as a Key Technology for Point-Supported, Biaxial Load Bearing Flat Slabs Made of Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2466
Year of Publication
2019
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
Author
Zöllig, Stefan
Muster, Marcel
Themessl, Adam
Publisher
IOP Publishing Ltd
Year of Publication
2019
Country of Publication
United Kingdom
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Connections
Keywords
Butt-Joint
Bending Strength
Shear Resistance
Language
English
Research Status
Complete
Series
IOP Conference Series: Earth and Environmental Science
Online Access
Free
Resource Link
Less detail

Charring Behavior of Structural Timber Elements in Full-Scale Fire Tests of Three Story Timber School Buildings

https://research.thinkwood.com/en/permalink/catalogue1706
Year of Publication
2016
Topic
Fire
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Suzuki, Jun-ichi
Kaku, Chihiro
Naruse, Tomohiro
Kagiya, Koji
Noboru, Yasui
Itagaki, Naoyuki
Izumi, Jun-ichi
Seki, Mariko
Kaku, Teruhiko
Hasemi, Yuji
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
Charring Rate
Delamination
Full Scale
Fire Test
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4437-4446
Summary
The charring behavior of timber structural elements, such as the charring rate of timber elements and delamination of glue-laminated timber, affects the structural stability of timber buildings. The charring rate of timber elements varies depending on the severity of fire exposure. However, charring rates have been ordinarily investigated in fire tests under the standard fire exposure defined by ISO 834. It is important to accumulate and analyze data on the charring behavior of timber elements under actual fire exposure. The aim of this study was to clarify the charring behavior of glue-laminated timber structural elements exposed to actual fire in full-scale fire tests of three-story timber school buildings. Charred and uncharred areas of the timber structural elements were carefully observed and investigated after the fire tests. The charring rates of timber elements in full-scale fire tests ranged from 0.6 mm/min to 1.3mm/min. The charring rates were greater than the nominal charring rates reported in past studies because of preheating and severe fire exposure.
Online Access
Free
Resource Link
Less detail

Construction and Seismic Testing of a Resilient Two-Story Mass Timber Structure with Cross Laminated Rocking Walls

https://research.thinkwood.com/en/permalink/catalogue2223
Year of Publication
2018
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Griesenauer, Daniel
Organization
Colorado School of Mines
Year of Publication
2018
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Full Scale
Shake Table Test
Rocking Walls
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Design and Behavior of a Mid-Rise Cross-Laminated Timber Building

https://research.thinkwood.com/en/permalink/catalogue242
Year of Publication
2012
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Lenon, Conor
Organization
Colorado School of Mines
Year of Publication
2012
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Finite Element Model
Shake Table Test
Full Scale
Moment Resistance
Language
English
Research Status
Complete
Summary
Cross-Laminated Timber (CLT) is a new engineered wood material that was introduced in the past decade as a promising candidate to build structures over 10 stories. So far, a handful of tall CLT buildings have been built in low seismic regions around the world. Full-scaled seismic shaking table tests revealed the vulnerability of this building type when resisting seismically-induced overturning. This study proposes a new analysis and design approach for developing overturning resistance for platform CLT buildings. New structural detailing is proposed to alter the moment-resisting mechanism and ...
Online Access
Free
Resource Link
Less detail

Design of Post-Tensioned Timber Beams for Fire Resistance

https://research.thinkwood.com/en/permalink/catalogue4
Year of Publication
2012
Topic
Design and Systems
Fire
Material
LVL (Laminated Veneer Lumber)
Application
Beams
Author
Buchanan, Andrew
Abu, Anthony
Carradine, David
Moss, Peter
Spellman, Phillip
Year of Publication
2012
Country of Publication
Switzerland
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Beams
Topic
Design and Systems
Fire
Keywords
Full Scale
Furnace Tests
Post-Tensioned
Box Beams
Vertical Loads
Failure
Language
English
Conference
International Conference on Structures in Fire
Research Status
Complete
Notes
June 6-8, 2012, Zurich, Switzerland
Summary
This paper describes a series of three full-scale furnace tests on post-tensioned LVL box beams loaded with vertical loads, and presents a proposed fire design method for post-tensioned timber members. The design method is adapted from the calculation methods given in Eurocode 5 and NZS:3603 which includes the effects of changing geometry and several failure mechanisms specific to posttensioned timber. The design procedures include an estimation of the heating of the tendons within the timber cavities, and relaxation of post-tensioning forces. Additionally, comparisons of the designs and assumptions used in the proposed fire design method and the results of the full-scale furnace tests are made. The experimental investigation and development of a design method have shown several areas which need to be addressed. It is important to calculate shear stresses in the timber section, as shear is much more likely to govern compared to solid timber. The investigation has shown that whilst tensile failures are less likely to govern the fire design of post-tensioned timber members, due to the axial compression of the post-tensioning, tensile stresses must still be calculated due to the changing centroid of the members as the fire progresses. Research has also highlighted the importance of monitoring additional deflections and moments caused by the high level of axial loads.
Online Access
Free
Resource Link
Less detail

Dowelled Timber Connections with Internal Members of Densified Veneer Wood and Fibre-Reinforced Polymer Dowels

https://research.thinkwood.com/en/permalink/catalogue1498
Year of Publication
2016
Topic
Mechanical Properties
Connections
Material
LVL (Laminated Veneer Lumber)
Author
Palma, Pedro
Kobel, Peter
Minor, Alexander
Frangi, Andrea
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Topic
Mechanical Properties
Connections
Keywords
Timber-to-Timber
Densified Veneer Wood
Fibre-Reinforced Polymer
Dowel Type Fastener
Embedment Tests
Bending Test
Shear Test
Full Scale
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 236-243
Summary
The mechanical behaviour of timber-to-timber connections with internal panels of densified veneer wood (DVW) and fibre-reinforced polymer (FRP) dowels was experimentally assessed and a design method, based on EN 1995-1-1, was developed. Embedment tests on DVW plates and bending/shear tests on FRP dowels were performed to characterise these components, followed by full-scale tests of connections assembled with these materials. The results show that these connections exhibit a mechanical behaviour compatible with structural applications, regarding both load-carrying capacity and ductility. The proposed design model is based on EN 1995-1-1’s expressions for connections with dowel-type fasteners and gives good predictions of the experimental load-carrying capacities.
Online Access
Free
Resource Link
Less detail

57 records – page 1 of 6.