Skip header and navigation

10 records – page 1 of 1.

Acoustic Testing and Wood Supply for Framework Office Building in Portland, OR

https://research.thinkwood.com/en/permalink/catalogue1830
Year of Publication
2017
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Ceilings
Walls
Roofs
Wood Building Systems
Organization
ARUP
StructureCraft
InterTek
Year of Publication
2017
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Floors
Ceilings
Walls
Roofs
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Sound Transmission
Impact Noise Transmission
Concrete Topping
Language
English
Research Status
Complete
Series
Framework: An Urban + Rural Design
Summary
A. Shop Drawings and Details for Tests B. Sound and Impact Test Results Summary C. Test 1: Sound and Impact Transmission Test - CLT D. Test 2: Sound and Impact Transmission Test - Concrete Topping E. Test 3a: Sound and Impact Transmission Test - Marmoleum F. Test 3b: Sound and Impact Transmission Test - Marmoleum G. Test 4: Sound and Impact Transmission Test - Carpet H. Test 5a: Sound and Impact Transmission Test - Luxury Vinyl Plank I. Test 5b: Sound and Impact Transmission Test - Luxury Vinyl Plank J. Test 6: Sound and Impact Transmission Test - Mechanical Roof
Online Access
Free
Resource Link
Less detail

Behavior of CLT Diaphragm Panel-to-Panel Connections with Self-tapping Screws

https://research.thinkwood.com/en/permalink/catalogue2188
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Floors
Roofs
Organization
TallWood Design Institute
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Floors
Roofs
Topic
Connections
Seismic
Keywords
Screws
Tall Wood
Earthquake
Research Status
In Progress
Notes
Project contact is Thomas Miller at Oregon State University
Summary
Understanding how roof and floor systems (commonly called diaphragms by engineers) that are built from Pacific Northwest-sourced cross-laminated timber (CLT) panels perform in earthquake prone areas is a critical area of research. These building components are key to transferring normal and extreme event forces into walls and down to the foundation. The tests performed in this project will provide data on commonly used approaches to connecting CLT panels within a floor or roof space and the performance of associated screw fasteners. Structural engineers will directly benefit through improved modeling tools. A broader benefit may be increased confidence in the construction of taller wood buildings in communities at greater risk for earthquakes.
Less detail

Calculative Cost and Process Analysis of Timber-Concrete-Composite Ceilings with Focus on Effort and Performance Values for Cost Calculations of Multi-Storey Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1753
Year of Publication
2016
Topic
Cost
Material
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
Application
Ceilings
Author
Koppelhuber, Joerg
Leitenbauer, Alexander
Heck, Detlef
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
Application
Ceilings
Topic
Cost
Keywords
Prefabrication
Multi-Storey
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5006-5014
Summary
Composite structures use the advantages of two materials – timber and concrete – and improve the efficiency of a material application. Especially the concept of timber-concrete-composite ceilings has synergetic effects to achieve an effective ratio of thickness to span with high cost effectiveness simultaneously. Following the systematic...
Online Access
Free
Resource Link
Less detail

Connection and Performance of Two-Way CLT Plates

https://research.thinkwood.com/en/permalink/catalogue1482
Year of Publication
2018
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
Application
Floors
Roofs
Author
Zhang, Chao
Lee, George
Lam, Frank
Organization
University of British Columbia
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Floors
Roofs
Topic
Mechanical Properties
Connections
Keywords
Two-Way
Bending Test
Modulus of Elasticity
Self-Tapping Screws
Glued-In-Rod
Steel Connectors
Steel Plates
Language
English
Research Status
Complete
Summary
The two-way action of Cross Laminated Timber (CLT) is often ignored in the design of CLT due to its complexity. But in some cases, for example, large span timber floor/roof, the benefit of taking the two-way action into account may be considerable since it is often deflection controlled in the design...
Online Access
Free
Resource Link
Less detail

Development of Large Span CLT Floor/Roof System with Two-Way Plate Bending Action: Phase II

https://research.thinkwood.com/en/permalink/catalogue2247
Topic
General Information
Material
CLT (Cross-Laminated Timber)
Application
Floors
Roofs
Organization
University of British Columbia
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
Application
Floors
Roofs
Topic
General Information
Keywords
Mass Timber
Cost Effective
Research Status
In Progress
Notes
Project contact is Frank Lam at the University of British Columbia
Summary
A continuous CLT floor/roof system that has two way bending action across multiple CLT panels will create open floor space with long spans in both major and minor directions, making mass timber construction more competitive and cost-effective. A design guide on CLT two way floor/roof system, incorporating the results from the two phases of study, will be developed at the end.
Less detail

Durability and Protection of CLT in Parking Structures

https://research.thinkwood.com/en/permalink/catalogue2267
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Roofs
Organization
TallWood Design Institute
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Roofs
Topic
Mechanical Properties
Keywords
Mass Timber
Stress Tests
Weathering
Research Status
In Progress
Notes
Contact:Lech Muszynski, Oregon State University
Summary
The City of Springfield, Oregon hired SRG Partnership to design a CLT parking structure slated to be built in a new redevelopment zone on the Willamette River. The concept started as an academic exercise in a University of Oregon architectural design studio course led by Professor Judith Sheine. Mayor Christine Lundberg saw an opportunity to connect Springfield’s historic roots in the timber industry to the burgeoning new mass timber sector, and the project became a reality. Before the structure is built, important technical questions must be addressed concerning how to protect the timber elements against the Pacific Northwest weather and long-term dynamic loading from vehicles. A technical team from OSU’s Department of Wood Science and Engineering and School of Civil and Construction Engineering are narrowing down combinations of materials for testing. Proposed solutions include an asphalt topping on the CLT decking, similar to those often used on timber bridge decks. Stress tests will be conducted, simulating forces from vehicles turning, starting and stopping and backing up. Simulated weather testing will also be conducted in OSU’s multi-chamber modular environmental conditioning chamber. The Energy Studies in Buildings Laboratory at University of Oregon has conducted wind-driven rain studies to inform SRG’s design of the roof and exterior screening elements.
Less detail

Multi-objective Optimization of the Ceiling-to-Floor System in a Wooden Building

https://research.thinkwood.com/en/permalink/catalogue2252
Topic
Design and Systems
Material
Timber (unspecified)
Application
Ceilings
Floors
Organization
Université Laval
Country of Publication
Canada
Material
Timber (unspecified)
Application
Ceilings
Floors
Topic
Design and Systems
Keywords
Cost
Multi-objective Optimization
Research Status
In Progress
Notes
Project contact is Louis Gosselin at Université Laval
Summary
The volume occupied by all components between the ceiling of a floor and the floor of the upper floor (slab, ventilation duct, plumbing, etc.) is of great importance and it is best to minimize its thickness. This project aims to develop a multi-objective optimization strategy to design this sandwich type assembly according to various structural, acoustic, thermal and mass transfer criteria (Alev and Kalamees, 2017), while minimizing its volume, its size and its cost. and this, according to a given context. A case study will be conducted to assess the degree of optimality of the solutions chosen. Multidisciplinary tools facilitating the optimal design of this system will be proposed.
Less detail

Nail-Laminated Timber Canadian Design and Construction Guide

https://research.thinkwood.com/en/permalink/catalogue2243
Edition
1.1
Year of Publication
2017
Topic
Design and Systems
Acoustics and Vibration
Connections
Fire
General Information
Moisture
Seismic
Site Construction Management
Material
NLT (Nail-Laminated Timber)
Application
Floors
Roofs
Editor
Holt, Rebecca
Luthi, Tanya
Dickof, Carla
Edition
1.1
Publisher
Binational Softwood Lumber Council
Forestry Innovation Investment
Year of Publication
2017
Country of Publication
Canada
Format
Book
Material
NLT (Nail-Laminated Timber)
Application
Floors
Roofs
Topic
Design and Systems
Acoustics and Vibration
Connections
Fire
General Information
Moisture
Seismic
Site Construction Management
Language
English
Research Status
Complete
Summary
This Design and Construction Guide (the Guide) provides the Canadian design and construction industry with immediate support and guidance to ensure safe, predictable, and economical use of NLT. It is intended to offer practical strategies, advice, and guidance, transferring knowledge and lessons learned from those with experience. This Guide focuses on design and construction considerations for floor and roof systems pertaining to current Canadian construction practice and standards. While NLT is being used for vertical elements for walls, stair shafts, and elevator shafts, this Guide provides the greatest depth of direction for common horizontal applications. The information included here is supplemental to wood design and construction best practices and is specific to the application of NLT. Built examples are included to illustrate real application and visual reference as much as possible.
Online Access
Free
Resource Link
Less detail

Nail-Laminated Timber U.S. Design and Construction Guide

https://research.thinkwood.com/en/permalink/catalogue834
Edition
1.0
Year of Publication
2017
Topic
Acoustics and Vibration
Connections
Design and Systems
Fire
General Information
Moisture
Seismic
Site Construction Management
Material
NLT (Nail-Laminated Timber)
Application
Floors
Roofs
Editor
Holt, Rebecca Luthi, Tanya Dickof, Carla
Edition
1.0
Publisher
Binational Softwood Lumber Council
Year of Publication
2017
Country of Publication
United States
Format
Book
Material
NLT (Nail-Laminated Timber)
Application
Floors
Roofs
Topic
Acoustics and Vibration
Connections
Design and Systems
Fire
General Information
Moisture
Seismic
Site Construction Management
Language
English
Research Status
Complete
Summary
This Design and Construction Guide (the Guide) provides the U.S. design and construction community with guidance to ensure safe, predictable, and economical use of NLT. It is intended to offer practical strategies, advice, and guidance, transferring knowledge and lessons learned from NLT project experience. This Guide focuses on design and construction considerations for floor and roof systems pertaining to U.S. construction practice and standards. While NLT is being used for vertical elements for walls, stair shafts, and elevator shafts, this Guide provides the greatest depth of direction for more common horizontal applications. The information included here is supplemental to wood design and construction best practices and is specific to the application of NLT. Built examples are included to illustrate real application and visual reference as much as possible.
Online Access
Free
Resource Link
Less detail

Wetting and Drying Performance of Wood-Based Assemblies Related to On-Site Moisture Management

https://research.thinkwood.com/en/permalink/catalogue1782
Year of Publication
2016
Topic
Site Construction Management
Moisture
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Floors
Roofs
Author
Wang, Jieying
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Floors
Roofs
Topic
Site Construction Management
Moisture
Keywords
Moisture Content
Wetting
Drying
Construction
Climate
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5554-5563
Summary
This document aims to emphasize the importance of an appropriate level of on-site moisture management for wood construction, depending on weather conditions, construction methods, and assemblies used. It covers three different but related research projects. It first describes baseline moisture contents (MCs) measured from...
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.