Skip header and navigation

4 records – page 1 of 1.

Experimental Study on Loading Capacity of Glued-Laminated Timber Arches Subjected to Vertical Concentrated Loads

https://research.thinkwood.com/en/permalink/catalogue2581
Year of Publication
2020
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Arches
Author
Zhou, Jiale
Chuanxi, Li
Ke, Lu
He, Jun
Wang, Zhifeng
Publisher
Hindawi
Year of Publication
2020
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Arches
Topic
Design and Systems
Keywords
In-Plane Loading
Capacity
Douglas-Fir
Model
Failure Modes
Language
English
Research Status
Complete
Series
Advances in Civil Engineering
Summary
Glued-laminated timber arches are widely used in gymnasiums, bridges, and roof trusses. However, studies on their mechanical behaviours and design methods are still insufficient. This paper investigates the in-plane loading capacity of circular glued-laminated timber arches made of Douglas fir. Experiments were conducted on four timber-arch models with different rise-to-span ratios under concentrated loads at mid-span and quarter-point locations. The structural responses, failure modes, and loading capacity of the timber arch specimens were obtained. The results show that the timber arches presented symmetric and antisymmetric deformation under mid-point and quarter-point loading conditions, respectively. The downward shifting of the neutral axis of the cross section was observed under mid-point loading condition, which contributes to higher loading capacity compared to that under quarter-point loading condition. The loading condition significantly affects the ultimate loads and the strain distribution in the cross section. Based on the design formula in current standards for timber structures, an equivalent beam-column method was introduced to estimate the loading capacity of the laminated timber arches under vertical concentrated loads. The moment amplification factor in the formula was compared and discussed, and the value provided in the National Design Specification for Wood Construction was recommended with acceptable accuracy.
Online Access
Free
Resource Link
Less detail

Seismic Analysis of Three-Hinge Glulam Tudor Arches Using the FEMA P-695 Methodology

https://research.thinkwood.com/en/permalink/catalogue693
Year of Publication
2014
Topic
Seismic
Material
Glulam (Glue-Laminated Timber)
Application
Arches
Author
Charney, Finley
Eberle, Jonathan
Line, Philip
Kochkin, Vladimir
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Arches
Topic
Seismic
Keywords
Maximum Considered Earthquake
Seismic Response Modification Factor
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
This paper discusses the determination of the ASCE 7 seismic response modification factor R for three-hinge glulam Tudor arches. In an attempt to meet this objective, a limited application of the methods and procedures outlined in FEMA P-695 were used to...
Online Access
Free
Resource Link
Less detail

Structural Performance of the Second Oldest Glued-Laminated Structure in the United States

https://research.thinkwood.com/en/permalink/catalogue1118
Year of Publication
2014
Topic
Serviceability
Material
Glulam (Glue-Laminated Timber)
Application
Arches
Author
Rammer, Douglas
de Melo Moura, Jorge
Ross, Robert
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2014
Country of Publication
United States
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Arches
Topic
Serviceability
Keywords
Uniform Loading
Deformation
Language
English
Conference
Structures Congress 2014
Research Status
Complete
Notes
April 3-5, 2014, Boston, Massachusetts, United States
Summary
The second glued-laminated structure built in the United States was constructed at the USDA Forest Products Laboratory (FPL) in 1934 to demonstrate the performance of wooden arch buildings. After 75 years of use, the structure was decommissioned in 2010...
Online Access
Free
Resource Link
Less detail

Wood Design Manual 2017

https://research.thinkwood.com/en/permalink/catalogue2160
Year of Publication
2017
Topic
Design and Systems
Connections
Fire
Seismic
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Light Frame (Lumber+Panels)
DLT (Dowel Laminated Timber)
Application
General Application
Beams
Bridges and Spans
Columns
Floors
Ceilings
Arches
Shear Walls
Trusses
Walls