Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Acoustically-Tested Mass Timber Assemblies

https://research.thinkwood.com/en/permalink/catalogue1874
Year of Publication
2019
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Walls

Acoustical Performance of Mass Timber Building Elements

https://research.thinkwood.com/en/permalink/catalogue2553
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Floors
Walls
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Floors
Walls
Topic
Acoustics and Vibration
Keywords
Sound Insulation
Acoustic Membrane
Acoustical Performance
Research Status
In Progress
Notes
Project contact is Jianhui Zhou at the University of Northern British Columbia
Summary
Building acoustics has been identified as one of the key subjects for the success of mass timber in the multi-storey building markets. The project will investigate the acoustical performance of mass timber panels produced in British Columbia. The apparent sound transmission class (ASTC) and impact insulation class (AIIC) of bare mass timber elements as wall and/ or floor elements will be measured through a lab mock-up. It is expected that a database of the sound insulation performance of British Columbia mass timber products will be developed with guidance on optimal acoustical treatments to achieve different levels of performance.
Less detail

Addendum to RR-335: Sound Transmission Through Nail-Laminated Timber (NLT) Assemblies

https://research.thinkwood.com/en/permalink/catalogue1868
Year of Publication
2018
Topic
Acoustics and Vibration
Material
NLT (Nail-Laminated Timber)
Application
Floors
Walls

Apparent Sound Insulation in Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2616
Year of Publication
2020
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Application
Floors
Walls
Author
Mahn, Jeffrey
Quirt, David
Mueller-Trapet, Markus
Hoeller, Christoph
Organization
National Research Council of Canada. Construction
Publisher
National Research Council of Canada. Construction
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Application
Floors
Walls
Topic
Acoustics and Vibration
Design and Systems
Keywords
Airborne Sound Transmission
Apparent Sound Transmission Class
Sound Transmission
Adhesive
Language
English
Research Status
Complete
Summary
This Report presents the results from experimental studies of the airborne sound transmission of mass timber assemblies, together with an explanation of the calculation procedures to predict the apparent sound transmission class (ASTC) rating between adjacent spaces in a building constructed of mass timber assemblies. The experimental data which is the foundation for this Report includes the laboratory measured sound transmission loss of wall and floor assemblies constructed of Cross Laminated Timber (CLT), Nail-Laminated Timber (NLT) and Dowel-Laminated Timber (DLT), and the laboratory measured vibration reduction index between assemblies of junctions between CLT assemblies. The presentation of the measured data is combined with the presentation of the appropriate calculation procedures to determine the ASTC rating in buildings comprised of such assemblies along with numerous worked examples. Several types of CLT constructions are commercially available in Canada, but this study focused on CLT assemblies with an adhesive applied between the faces of the timber elements in adjacent layers, but no adhesive bonding between the adjacent timber elements within a given layer. These CLT assemblies could be called “Face-Laminated CLT Assemblies” but are simply referred to as CLT assemblies in this Report. Another form of CLT assemblies does have adhesive applied between the faces of the timber elements in adjacent layers as well as adhesive to bond the adjacent timber elements within a given layer. These assemblies are referred to as “Fully-Bonded CLT Assemblies” in this Report. Because fully-bonded CLT assemblies have different properties than face-laminated CLT assemblies, the sound transmission data and predictions in this Report do not apply to fully-bonded CLT assemblies.
Online Access
Free
Resource Link
Less detail

Experimental Behavior of a Continuous Metal Connector for a Wood-Concrete Composite System

https://research.thinkwood.com/en/permalink/catalogue730
Year of Publication
2004
Topic
Connections
Design and Systems
Mechanical Properties
Material
Timber-Concrete Composite
PSL (Parallel Strand Lumber)
Application
Floors

Facilitation of Acoustics Testing for Sustainable Mass Timber Technologies, Leading to Publication of Open Source Acoustics Data for Standard Acoustics Scenarios

https://research.thinkwood.com/en/permalink/catalogue2629
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
MPP (Mass Plywood Panel)
NLT (Nail-Laminated Timber)
Application
Floors
Walls
Organization
University of Oregon
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
MPP (Mass Plywood Panel)
NLT (Nail-Laminated Timber)
Application
Floors
Walls
Topic
Acoustics and Vibration
Keywords
Acoustics Testing Facility
Research Status
In Progress
Notes
Project contact is Kevin Van Den Wymelenberg at the University of Oregon
Summary
Our aim is to support the acceptance and increase market share of sustainable mass timber construction technologies such as Cross Laminated Timber (CLT), Mass Plywood Panel (MPP), Glue Laminated Timber (GLT), and Nail Laminated Timber (NLT), by lowering or eliminating barriers due to lack of acoustics data for mass timber construction assemblies. Currently, sustainable mass timber projects carry the cost of required acoustics testing, impairing their economic feasibility. With our new acoustics testing facility, testing supported by this grant will produce common acoustics data on the assemblies most in market demand. These data will be hosted in an online open-access database, supporting rapid growth in this industry. Increasingly specialized testing scenarios will be more easily accommodated, as this facility is located closer to USFS source materials and production facilities than currently operating facilities and is designed specifically for the specialized requirements of testing mass timber assemblies. Since sustainable mass timber technologies allow increased utilization of lower quality timber, and timber with insect damage, increasing the market share of mass timber will increase utilization of USFS timber, specifically that which might otherwise remain on-site unused. With removal of this type of timber, fire load will be lessened as well. Initial testing supported by this grant will include mass timber assemblies constructed with lower quality and smaller dimension timber.
Less detail

Guide for On-site Moisture Management of Wood Construction

https://research.thinkwood.com/en/permalink/catalogue1968
Year of Publication
2016
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
OSL (Oriented Strand Lumber)
NLT (Nail-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Floors
Wood Building Systems
General Application
Author
Wang, Jieying
Organization
FPInnovations
Publisher
BC Housing Research Centre
Year of Publication
2016
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
OSL (Oriented Strand Lumber)
NLT (Nail-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Floors
Wood Building Systems
General Application
Topic
Moisture
Keywords
Moisture Management
Construction
Risk Mitigation
Prefabrication
Multi-Storey
Language
English
Research Status
Complete
Summary
Overall moisture management during construction has become increasingly important due to the increase in building height and area, which potentially prolongs the exposure to inclement weather, and the overall increase in speed of construction, which may not allow adequate time for drying to occur. This report provides guidelines and relevant information about on-site moisture management practices that can be adapted to suit a range of wood construction projects...
Online Access
Free
Resource Link
Less detail

Nail-Laminated Timber Canadian Design and Construction Guide

https://research.thinkwood.com/en/permalink/catalogue2243
Edition
1.1
Year of Publication
2017
Topic
Design and Systems
Acoustics and Vibration
Connections
Fire
General Information
Moisture
Seismic
Site Construction Management
Material
NLT (Nail-Laminated Timber)
Application
Floors
Roofs
Editor
Holt, Rebecca
Luthi, Tanya
Dickof, Carla
Edition
1.1
Publisher
Binational Softwood Lumber Council
Forestry Innovation Investment
Year of Publication
2017
Country of Publication
Canada
Format
Book
Material
NLT (Nail-Laminated Timber)
Application
Floors
Roofs
Topic
Design and Systems
Acoustics and Vibration
Connections
Fire
General Information
Moisture
Seismic
Site Construction Management
Language
English
Research Status
Complete
Summary
This Design and Construction Guide (the Guide) provides the Canadian design and construction industry with immediate support and guidance to ensure safe, predictable, and economical use of NLT. It is intended to offer practical strategies, advice, and guidance, transferring knowledge and lessons learned from those with experience. This Guide focuses on design and construction considerations for floor and roof systems pertaining to current Canadian construction practice and standards. While NLT is being used for vertical elements for walls, stair shafts, and elevator shafts, this Guide provides the greatest depth of direction for common horizontal applications. The information included here is supplemental to wood design and construction best practices and is specific to the application of NLT. Built examples are included to illustrate real application and visual reference as much as possible.
Online Access
Free
Resource Link
Less detail

Nail-Laminated Timber U.S. Design and Construction Guide

https://research.thinkwood.com/en/permalink/catalogue834
Edition
1.0
Year of Publication
2017
Topic
Acoustics and Vibration
Connections
Design and Systems
Fire
General Information
Moisture
Seismic
Site Construction Management
Material
NLT (Nail-Laminated Timber)
Application
Floors
Roofs
Editor
Holt, Rebecca Luthi, Tanya Dickof, Carla
Edition
1.0
Publisher
Binational Softwood Lumber Council
Year of Publication
2017
Country of Publication
United States
Format
Book
Material
NLT (Nail-Laminated Timber)
Application
Floors
Roofs
Topic
Acoustics and Vibration
Connections
Design and Systems
Fire
General Information
Moisture
Seismic
Site Construction Management
Language
English
Research Status
Complete
Summary
This Design and Construction Guide (the Guide) provides the U.S. design and construction community with guidance to ensure safe, predictable, and economical use of NLT. It is intended to offer practical strategies, advice, and guidance, transferring knowledge and lessons learned from NLT project experience. This Guide focuses on design and construction considerations for floor and roof systems pertaining to U.S. construction practice and standards. While NLT is being used for vertical elements for walls, stair shafts, and elevator shafts, this Guide provides the greatest depth of direction for more common horizontal applications. The information included here is supplemental to wood design and construction best practices and is specific to the application of NLT. Built examples are included to illustrate real application and visual reference as much as possible.
Online Access
Free
Resource Link
Less detail

Vibration and Sound Insulation Performance of Mass Timber Floors with Concrete Toppings

https://research.thinkwood.com/en/permalink/catalogue2548
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Ceilings
Organization
University of Northern British Columbia
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Ceilings
Topic
Acoustics and Vibration
Keywords
Concrete Topping
Acoustic Membrane
Exposed Mass Timber Elements
Research Status
In Progress
Notes
Project contact is Jianhui Zhou at the University of Northern British Columbia
Summary
The impact sound perceived in the lower volume in a building is radiated by the vibration of the ceiling transmitted from the vibration of the floor generated by an impact source in the upper volume. Thus, the dynamic behaviour of a floor is one crucial intermediate step to understand the impact sound insulation performance of such a floor. A key to reducing the impact sound is to isolate the structural floor from the subfloor. Floating floor construction is a common way of improving the impact sound insulation, which is to float a concrete topping on the mass timber floor with an elastic layer in between. There are two types of floating floor solutions, a) with a continuous elastic layer and b) with point bearing elastic mounts as shown in Figure 1. This study will investigate both solutions and will provide guidance on how to adopt both solutions for mass timber floors with an exposed ceiling. The objectives of this project are: 1. To measure the sound insulation performance of mass timber floors with full-scale concrete topping on various continuous elastic interlayer materials 2. To measure the sound insulation performance of mass timber floors with full-scale concrete topping on discrete elastic load mounts
Less detail

10 records – page 1 of 1.