Skip header and navigation

80 records – page 1 of 8.

Design of Post-Tensioned Timber Beams for Fire Resistance

https://research.thinkwood.com/en/permalink/catalogue4
Year of Publication
2012
Topic
Design and Systems
Fire
Material
LVL (Laminated Veneer Lumber)
Application
Beams
Author
Buchanan, Andrew
Abu, Anthony
Carradine, David
Moss, Peter
Spellman, Phillip
Year of Publication
2012
Country of Publication
Switzerland
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Beams
Topic
Design and Systems
Fire
Keywords
Full Scale
Furnace Tests
Post-Tensioned
Box Beams
Vertical Loads
Failure
Language
English
Conference
International Conference on Structures in Fire
Research Status
Complete
Notes
June 6-8, 2012, Zurich, Switzerland
Summary
This paper describes a series of three full-scale furnace tests on post-tensioned LVL box beams loaded with vertical loads, and presents a proposed fire design method for post-tensioned timber members. The design method is adapted from the calculation methods given in Eurocode 5 and NZS:3603 which includes the effects of changing geometry and several failure mechanisms specific to posttensioned timber. The design procedures include an estimation of the heating of the tendons within the timber cavities, and relaxation of post-tensioning forces. Additionally, comparisons of the designs and assumptions used in the proposed fire design method and the results of the full-scale furnace tests are made. The experimental investigation and development of a design method have shown several areas which need to be addressed. It is important to calculate shear stresses in the timber section, as shear is much more likely to govern compared to solid timber. The investigation has shown that whilst tensile failures are less likely to govern the fire design of post-tensioned timber members, due to the axial compression of the post-tensioning, tensile stresses must still be calculated due to the changing centroid of the members as the fire progresses. Research has also highlighted the importance of monitoring additional deflections and moments caused by the high level of axial loads.
Online Access
Free
Resource Link
Less detail

Air-Coupled Ultrasound Propagation and Novel Non-Destructive Bonding Quality Assessment of Timber Composites

https://research.thinkwood.com/en/permalink/catalogue13
Year of Publication
2012
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Martín, Sergio
Organization
ETH Zurich
Year of Publication
2012
Country of Publication
Switzerland
Format
Thesis
Material
Glulam (Glue-Laminated Timber)
Topic
Mechanical Properties
Keywords
Adhesives
Bonding
Delamination
Failure
Non-Destructive Testing
Air-coupled Ultrasound (ACU)
Finite-Difference Time-Domain (FDTD) model
Language
English
Research Status
Complete
Summary
Glued laminated timber (glulam) is manufactured by gluing and stacking timber lamellas, which are sawn and finger-jointed parallel to the wood grain direction. This results in a sustainable and competitive construction material in terms of dimensional versatility and load-carrying capacity. With the proliferation of glued timber constructions, there is an increasing concern about safety problems related to adhesive bonding. Delaminations are caused by manufacturing errors and in service climate variations simultaneously combined with long-sustained loads (snow, wind and gravel filling on flat roofs). Several recent building collapses were related to bonding failure, which should be prevented in the future with a timely defect detection. As an outlook, the feasibility of air-coupled ultrasound tomography was demonstrated with numerical tests and preliminary experiments on glulam. The FDTD wave propagation model was excited by the difference of the time-reversed sound fields transmitted through a test and a reference (defect-free) glulam cross-section. Both datasets were obtained with the same SLT setup. Wave convergences then provided a map of bonding defects along the height and width of the inspected glulam cross-sections. Further research is envisaged in this direction
Online Access
Free
Resource Link
Less detail

Carterton Events Centre Auditorium Pres-Lam Wall Design and Construction

https://research.thinkwood.com/en/permalink/catalogue38
Year of Publication
2012
Topic
Seismic
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Shear Walls
Author
Dekker, Dave
Chung, Stanley
Palermo, Alessandro
Year of Publication
2012
Country of Publication
New Zealand
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Shear Walls
Topic
Seismic
Keywords
Lateral Loads
Post-Tensioned
Pres-Lam
Sustainability
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 13-15, 2012, Christchurch, New Zealand
Summary
Driven by sustainability, locally available resources and expertise, and economy, the design of the Carterton Events Centre focused on timber for the majority of the main structural and non-structural components. Combined with a client desire for minimization of earthquake damage, dissipative post-tensioned rocking...
Online Access
Free
Resource Link
Less detail

Transition Strategies: Accelerating Social Acceptance and Removing the Barriers to Prefabricated Multi-Storey Timber Urban Infill Developments in Australia Using CLT Construction Systems

https://research.thinkwood.com/en/permalink/catalogue50
Year of Publication
2012
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Author
Lehmann, Steffen
Reinschmidt, Amanda
Mustillo, Lauren
Organization
Forest and Wood Products Australia
Year of Publication
2012
Country of Publication
Australia
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Market and Adoption
Keywords
Australia
Multi-Storey
Social Acceptance
Consumer Behaviour
Housing
Language
English
Research Status
Complete
Summary
This report was commissioned to review and formulate strategies for the accelerated uptake and social acceptance of living in multi-storey cross-laminated timber (CLT)-constructed buildings in infill developments to: remove cultural barriers, meet the sustainability expectations of potential buyers and obtain a better understanding of how we can facilitate the rapid introduction of this innovative construction technology in Australia. An extensive review of literature within the field was conducted to gather an overview of the barriers that inhibit consumers, governments and industry in the uptake and acceptance of CLTconstructed buildings for infill development. Data was collected on CLT buildings worldwide, to build a comprehensive picture of multi-storey timber buildings using CLT-construction systems.
Online Access
Free
Resource Link
Less detail

A Comparative Cradle-To-Gate Life Cycle Assessment of Mid-Rise Office Building Construction Alternatives: Laminated Timber or Reinforced Concrete

https://research.thinkwood.com/en/permalink/catalogue52
Year of Publication
2012
Topic
Energy Performance
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Author
Robertson, Adam
Lam, Frank
Cole, Raymond
Publisher
MDPI
Year of Publication
2012
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Topic
Energy Performance
Environmental Impact
Keywords
Concrete
Embodied Carbon
Life-Cycle Assessment
Mid-Rise
National Building Code of Canada
NBCC
North America
Office Buildings
Language
English
Research Status
Complete
Series
Buildings
ISSN
2075-5309
Summary
The objective of this project was to quantify and compare the environmental impacts associated with alternative designs for a typical North American mid-rise office building. Two scenarios were considered; a traditional cast-in-place, reinforced concrete frame and a laminated timber hybrid design, which utilized engineered wood products (cross-laminated timber (CLT) and glulam). The boundary of the quantitative analysis was cradle-to-construction site gate and encompassed the structural support system and the building enclosure. Floor plans, elevations, material quantities, and structural loads associated with a five-storey concrete-framed building design were obtained from issued-for-construction drawings. A functionally equivalent, laminated timber hybrid design was conceived, based on Canadian Building Code requirements. Design values for locally produced CLT panels were established from in-house material testing. Primary data collected from a pilot-scale manufacturing facility was used to develop the life cycle inventory for CLT, whereas secondary sources were referenced for other construction materials. The TRACI characterization methodology was employed to translate inventory flows into impact indicators. The results indicated that the laminated timber building design offered a lower environmental impact in 10 of 11 assessment categories. The cradle-to-gate process energy was found to be nearly identical in both design scenarios (3.5 GJ/m2), whereas the cumulative embodied energy (feedstock plus process) of construction materials was estimated to be 8.2 and 4.6 GJ/m2 for the timber and concrete designs, respectively; which indicated an increased availability of readily accessible potential energy stored within the building materials of the timber alternative.
Online Access
Free
Resource Link
Less detail

Experimental-Numerical Analyses of the Seismic Behaviour of Cross-Laminated Wall Systems

https://research.thinkwood.com/en/permalink/catalogue56
Year of Publication
2012
Topic
Seismic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Gavric, Igor
Rinaldin, Giovanni
Amadio, Claudio
Fragiacomo, Massimo
Ceccotti, Ario
Year of Publication
2012
Country of Publication
Portugal
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Seismic
Energy Performance
Keywords
Finite Element Model
Abaqus
Experimental
Numerical
Full Scale
Cyclic Testing
Language
English
Conference
World Conference on Earthquake Engineering
Research Status
Complete
Notes
September 24-28, 2012, Lisbon, Portugal
Summary
The paper discusses experimental and numerical seismic analyses of typical connections and wall systems used in cross-laminated (X-Lam) timber buildings. An extended experimental programme on typical X-Lam connections was performed at IVALSA Trees and Timber Institute. In addition, cyclic tests were also carried out on full-scale single and coupled X-Lam wall panels with different configurations and mechanical connectors subjected to lateral force. An advanced non-linear hysteretic spring to describe accurately the cyclic behaviour of connections was implemented in ABAQUS finite element software package as an external subroutine. The FE model with the springs calibrated on single connection tests was then used to reproduce numerically the behaviour of X-Lam wall panels, and the results were compared with the outcomes of experimental full-scale tests carried out at IVALSA. The developed model is suitable for evaluating dissipated energy and seismic vulnerability of X-Lam structures.
Online Access
Free
Resource Link
Less detail

Comparison of Environmental Performance of a Five-Storey Building Built with Cross-Laminated Timber and Concrete

https://research.thinkwood.com/en/permalink/catalogue65
Year of Publication
2012
Topic
Energy Performance
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Chen, Yue
Organization
University of British Columbia
Year of Publication
2012
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Environmental Impact
Keywords
Canada
Concrete
Energy Consumption
Environmental
Mid-Rise
North America
Office Buildings
Passive Buildings
Language
English
Research Status
Complete
Summary
Cross Laminated Timber (CLT), which is made by laminating dimension lumber at right angles, is an innovative high-performance building material that offers many positive attributes including renewability, high structural stability, storage of carbon during the building life, good fire resistance, possibility of material recycling and reuse. It is conceptually a sustainable and cost effective structural timber solution that can compete with concrete in non-residential and multi-family mid-rise building market. Therefore, there is a need to understand and quantify the environmental attribute of this building system in the context of North American resources, manufacturing technology, energy constraints, building types, and construction practice. This study is to compare energy consumption of two building designs using different materials, i.e. CLT and concrete.
Online Access
Free
Resource Link
Less detail

Damage Assessment of Cross Laminated Timber Connections Subjected to Simulated Earthquake Loads

https://research.thinkwood.com/en/permalink/catalogue70
Year of Publication
2012
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Schneider, Johannes
Stiemer, Siegfried
Tesfamariam, Solomon
Karacabeyli, Erol
Popovski, Marjan
Year of Publication
2012
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Seismic
Keywords
Damage
Panels
North American Market
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
July 15-19, 2012, Auckland, New Zealand
Summary
Wood-frame is the most common construction type for residential buildings in North America. However, there is a limit to the height of the building using a traditional wood-frame structure. Cross-laminated timber (CLT) provides possible solutions to mid-...
Online Access
Free
Resource Link
Less detail

Seismic Performance of Cross-Laminated Timber Panel Buildings Buildings with Dissipative Connection

https://research.thinkwood.com/en/permalink/catalogue84
Year of Publication
2012
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Latour, Massimo
Rizzano, Gianvittorio
Torello, Giuseppe
Year of Publication
2012
Country of Publication
Portugal
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Seismic
Keywords
Angle Bracket
Energy Dissipation
Cyclic Testing
L-stub
Language
English
Conference
World Conference on Earthquake Engineering
Research Status
Complete
Notes
September 24-28, 2012, Lisbon, Portugal
Summary
Cross-laminated timber panel buildings are gaining a growing interest of the scientific community due to significant technical advantages, such as the material sustainability, the high fire resistance and quickness of erection. Nevertheless, it is well known that timber panels themselves are not able to dissipate a significant amount of energy during an earthquake. In fact, in this system the seismic design is carried out in order to dissipate the energy by means of inelasticity of connections. Generally, the elements devoted to withstand plastic deformations are the panel-panel and panel-foundation joints and, therefore, their ability to sustain repeated excursion in plastic range governs the building inelastic response. The paper here presented aims to propose an advanced approach for designing cross laminated timber panel buildings. In particular, it is proposed to substitute the classical hold-downs, which usually exhibit a limited dissipation capacity, with an innovative type of dissipative angle bracket. The new connections, called dissipative L-stub, apply the concept usually adopted for designing the hysteretic metallic dampers ADAS (Added Damping and Stiffness). In particular, their tapered shape allows a better spread of lasticization resulting in a high dissipation capacity. Within this framework, in order to characterize the force-displacement response under cyclic loads of L-stubs an experimental campaign is carried out. Afterwards, the effectiveness of the proposed approach is proved by analysing the non-linear response under seismic loads of a three-storey building alternatively equipped with hold-downs or L-stub. Finally, the response of classical and innovative system is compared in terms of behaviour factor.
Online Access
Free
Resource Link
Less detail

Fire Resistance of Laminated Veneer Lumber (LVL) and Cross-Laminated Timber (XLAM) Elements

https://research.thinkwood.com/en/permalink/catalogue97
Year of Publication
2012
Topic
Fire
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Author
Menis, Agnese
Organization
University of Cagliari
Year of Publication
2012
Country of Publication
Italy
Format
Thesis
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Topic
Fire
Keywords
Numerical models
Finite element (FE) model
Abaqus
Testing
Language
English
Research Status
Complete
Summary
This research investigates the fire behaviour of laminated veneer lumber elements and cross-laminated timber panels. The study focused on some research questions regarding the fire resistance of unprotected and protected timber structural elements, the possibility to predict accurately the fire behaviour of timber elements through numerical modelling, and the accuracy of analytical estimations of fire resistance using simplified design methods. Experimental tests of small and large specimens exposed to fire on one or more sides and subjected to different types and levels of load were performed. The results highlight the good performance of timber structural elements in fire conditions. The collected data were used to validate two- and three-dimensional models implemented in the general purpose finite element code Abaqus. Thermal and mechanical analyses were carried out to estimate the temperature distribution within unprotected and protected cross-sections of different sizes, the fire resistance and the displacement of timber elements loaded inplane and out-of-plane
Online Access
Free
Resource Link
Less detail

80 records – page 1 of 8.