Skip header and navigation

Refine Results By

235 records – page 1 of 24.

Three-Dimensional Numerical Calculation Model for Static Behavior Simulation of Cross-Laminated Timber Plates under Thermal Environment

https://research.thinkwood.com/en/permalink/catalogue2766
Year of Publication
2021
Topic
Fire
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Hu, Wenliang
Hou, Wei
Zhu, Zhao
Huang, Xuhui
Publisher
Hindawi Publishing Corporation
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Fire
Mechanical Properties
Keywords
Finite Element Method (FEM)
Thermal Behaviour
Thermal Environment
Deformation
Load Bearing Capacity
Language
English
Research Status
Complete
Series
Mathematical Problems in Engineering
Summary
Cross-laminated timber (CLT) is well known as an interesting technical and economical product for modern wood structures. The use of CLT for modern construction industry has become increasingly popular in particular for residential timber buildings. Analyzing the CLT behavior in high thermal environment has attracted scholars’ attention. Thermal environment greatly influences the CLT properties and load bearing capacity of CLT, and the investigation can form the basis for predicting the structural response of such CLT-based structures. In the present work, the finite element method (FEM) is employed to analyze the thermal influence on the deformation of CLT. Furthermore, several factors were taken into consideration, including board layer number, hole conformation, and hole position, respectively. In order to determine the influence, several numerical models for different calculation were established. The calculation process was validated by comparing with published data. The performance is quantified by demonstrating the temperature distribution and structural deformation.
Online Access
Free
Resource Link
Less detail

Mass Timber Design Manual

https://research.thinkwood.com/en/permalink/catalogue2780
Year of Publication
2021
Topic
Acoustics and Vibration
Connections
Cost
Design and Systems
Energy Performance
Environmental Impact
Fire
General Information
Moisture
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Organization
WoodWorks
Think Wood
Year of Publication
2021
Country of Publication
United States
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Connections
Cost
Design and Systems
Energy Performance
Environmental Impact
Fire
General Information
Moisture
Keywords
Mass Timber
United States
Building Systems
Tall Wood
Sustainability
IBC
Applications
Language
English
Research Status
Complete
Summary
This manual is helpful for experts and novices alike. Whether you’re new to mass timber or an early adopter you’ll benefit from its comprehensive summary of the most up to date resources on topics from mass timber products and applications to tall wood construction and sustainability. The manual’s content includes WoodWorks technical papers, Think Wood continuing education articles, case studies, expert Q&As, technical guides and other helpful tools. Click through to view each individual resource or download the master resource folder for all files in one handy location. For your convenience, this book will be updated annually as mass timber product development and the market are quickly evolving.
Online Access
Free
Resource Link
Less detail

Mass Timber Building Science Primer

https://research.thinkwood.com/en/permalink/catalogue2797
Year of Publication
2021
Topic
Design and Systems
Moisture
Fire
Acoustics and Vibration
General Information
Connections
Market and Adoption
Serviceability
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Author
Kesik, Ted
Martin, Rosemary
Organization
Mass Timber Institute
RDH Building Science
Publisher
Mass Timber Institute
Year of Publication
2021
Country of Publication
Canada
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Moisture
Fire
Acoustics and Vibration
General Information
Connections
Market and Adoption
Serviceability
Keywords
Mass Timber
Building Science
Language
English
Research Status
Complete
Summary
The development of this primer commenced shortly after the 2018 launch of the Mass Timber Institute (MTI) centered at the University of Toronto. Funding for this publication was generously provided by the Ontario Ministry of Natural Resources and Forestry. Although numerous jurisdictions have established design guides for tall mass timber buildings, architects and engineers often do not have access to the specialized building science knowledge required to deliver well performing mass timber buildings. MTI worked collaboratively with industry, design professionals, academia, researchers and code experts to develop the scope and content of this mass timber building science primer. Although provincially funded, the broader Canadian context underlying this publication was viewed as the most appropriate means of advancing Ontario’s nascent mass timber building industry. This publication also extends beyond Canada and is based on universally applicable principles of building science and how these principles may be used anywhere in all aspects of mass timber building technology. Specifically, these guidelines were developed to guide stakeholders in selecting and implementing appropriate building science practices and protocols to ensure the acceptable life cycle performance of mass timber buildings. It is essential that each representative stakeholder, developer/owner, architect/engineer, supplier, constructor, wood erector, building official, insurer, and facility manager, understand these principles and how to apply them during the design, procurement, construction and in-service phases before embarking on a mass timber building project. When mass timber building technology has enjoyed the same degree of penetration as steel and concrete, this primer will be long outdated and its constituent concepts will have been baked into the training and education of design professionals and all those who fabricate, construct, maintain and manage mass timber buildings. One of the most important reasons this publication was developed was to identify gaps in building science knowledge related to mass timber buildings and hopefully to address these gaps with appropriate research, development and demonstration programs. The mass timber building industry in Canada is still a collection of seedlings that continue to grow and as such they deserve the stewardship of the best available building science knowledge to sustain them until such time as they become a forest that can fend for itself.
Online Access
Free
Resource Link
Less detail

Predicting Fire Resistance Ratings of Timber Structures Using Artificial Neural Networks

https://research.thinkwood.com/en/permalink/catalogue2383
Year of Publication
2020
Topic
Fire
Application
Wood Building Systems
Floors
Author
Tung, Pham Thanh
Hung, Pham Thanh
Publisher
National University of Civil Engineering
Year of Publication
2020
Country of Publication
Vietnam
Format
Journal Article
Application
Wood Building Systems
Floors
Topic
Fire
Keywords
Artificial Neural Network
Fire Resistance
Sensitivity Analysis
Wooden Floor Assembly
Language
English
Research Status
Complete
Series
Journal of Science and Technology in Civil Engineering
Online Access
Free
Resource Link
Less detail

Encapsulated Mass Timber Construction Char Rate Analysis

https://research.thinkwood.com/en/permalink/catalogue2387
Year of Publication
2020
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls

Fire Tests of South African Cross-laminated Timber Wall Panels: Fire Ratings, Charring Rates, and Delamination

https://research.thinkwood.com/en/permalink/catalogue2442
Year of Publication
2020
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
van der Westhuyzen, S.
Walls, R.
de Koker, N.
Publisher
Scientific Elecronic Library Online (SciELO) South Africa
Year of Publication
2020
Country of Publication
South Africa
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Fire
Keywords
Structural Fire Engineering
Charring Rate
Delamination
Panels
Pine
Eucalyptus
Language
English
Research Status
Complete
Series
Journal of the South African Institution of Civil Engineering
Online Access
Free
Resource Link
Less detail

Design Guide for Timber-Concrete Composite Floors in Canada

https://research.thinkwood.com/en/permalink/catalogue2460
Year of Publication
2020
Topic
Design and Systems
Connections
Acoustics and Vibration
Fire
Material
Timber-Concrete Composite
Application
Floors
Organization
FPInnovations
Year of Publication
2020
Country of Publication
Canada
Format
Book/Guide
Material
Timber-Concrete Composite
Application
Floors
Topic
Design and Systems
Connections
Acoustics and Vibration
Fire
Keywords
Shear Connection
Ultimate Limit States
Vibration
Fire Resistance
Language
English
Research Status
Complete
Summary
As part of its research work on wood buildings, FPInnovations has recently launched a Design Guide for Timber-Concrete Composite Floors in Canada. This technique, far from being new, could prove to be a cost-competitive solution for floors with longer-span since the mechanical properties of the two materials act in complementarity. Timber-concrete systems consist of two distinct layers, a timber layer and a concrete layer (on top), joined together by shear connectors. The properties of both materials are then better exploited since tension forces from bending are mainly resisted by the timber, while compression forces from bending are resisted by the concrete. This guide, which contains numerous illustrations and formulas to help users better plan their projects, addresses many aspects of the design of timber-concrete composite floors, for example shear connection systems, ultimate limit state design, vibration and fire resistance of floors, and much more.
Online Access
Free
Resource Link
Less detail

Evaluation of Fire-Retardant Treated Laminated Veneer Lumber

https://research.thinkwood.com/en/permalink/catalogue2471
Year of Publication
2020
Topic
Fire
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)

Calculating the Fire Resistance of Wood Members and Assemblies: Technical Report No. 10

https://research.thinkwood.com/en/permalink/catalogue2492
Year of Publication
2020
Topic
Fire
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Columns
Beams
Floors
Walls
Wood Building Systems
Decking

Evaluation of Fire-Retardant Treated Laminated Veneer Lumber: Final Report — Part 1 of 2

https://research.thinkwood.com/en/permalink/catalogue2502
Year of Publication
2020
Topic
Fire
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems

235 records – page 1 of 24.