Skip header and navigation

Refine Results By

73 records – page 1 of 8.

Analysis and Tests of Lateral Resistance of Bolted and Screwed Connections of CLT

https://research.thinkwood.com/en/permalink/catalogue2956
Year of Publication
2022
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Huo, Liangliang
Zhu, Enchun
Niu, Shuang
Wu, Guofang
Organization
Harbin Institute of Technology
China Academy of Forestry
Editor
Ozarska, Barbara
Monaco, Angela
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Mechanical Properties
Connections
Keywords
Lateral Resistance
European Yield Model
Bolt Connection
Screw Connectors
Emdedment Stress
Research Status
Complete
Series
Forests
Summary
The lateral resistance of dowel-type connections with CLT is related to its lay-up, species of the laminations and even the manufacture method. Treating the CLT as homogeneous material, current methods develop new equations through test results or make use of the existing equations for the embedment strength already used in design codes; thus, the lateral resistance of dowel-type connections of CLT can be calculated. This kind of approach does not take the embedment stress distribution into account, which may lead to inaccuracy in predicting the lateral resistance and yield mode of the dowel-type connections in CLT. In this study, tests of the bolted connections and the screwed connections of CLT were conducted by considering the effects of the orientation of the laminations, the thickness of the connected members, the fastener diameter and strength of the materials. The material properties including yield strength of the fasteners and embedment strength of the CLT laminations were also tested. Using analysis of the dowel-type connections of CLT by introducing the equivalent embedment stress distribution, equations for the lateral resistance of the connections based on the European Yield Model were developed. The predicted lateral resistance and yield modes were in good agreement with the test results; the correctness and the feasibility of the equations were thus validated.
Online Access
Free
Resource Link
Less detail

Mass Timber Design Manual

https://research.thinkwood.com/en/permalink/catalogue2780
Year of Publication
2021
Topic
Acoustics and Vibration
Connections
Cost
Design and Systems
Energy Performance
Environmental Impact
Fire
General Information
Moisture
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Organization
WoodWorks
Think Wood
Year of Publication
2021
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Connections
Cost
Design and Systems
Energy Performance
Environmental Impact
Fire
General Information
Moisture
Keywords
Mass Timber
United States
Building Systems
Tall Wood
Sustainability
IBC
Applications
Research Status
Complete
Summary
This manual is helpful for experts and novices alike. Whether you’re new to mass timber or an early adopter you’ll benefit from its comprehensive summary of the most up to date resources on topics from mass timber products and applications to tall wood construction and sustainability. The manual’s content includes WoodWorks technical papers, Think Wood continuing education articles, case studies, expert Q&As, technical guides and other helpful tools. Click through to view each individual resource or download the master resource folder for all files in one handy location. For your convenience, this book will be updated annually as mass timber product development and the market are quickly evolving.
Online Access
Free
Resource Link
Less detail

Mass Timber Building Science Primer

https://research.thinkwood.com/en/permalink/catalogue2797
Year of Publication
2021
Topic
Design and Systems
Moisture
Fire
Acoustics and Vibration
General Information
Connections
Market and Adoption
Serviceability
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Author
Kesik, Ted
Martin, Rosemary
Organization
Mass Timber Institute
RDH Building Science
Publisher
Mass Timber Institute
Year of Publication
2021
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Moisture
Fire
Acoustics and Vibration
General Information
Connections
Market and Adoption
Serviceability
Keywords
Mass Timber
Building Science
Research Status
Complete
Summary
The development of this primer commenced shortly after the 2018 launch of the Mass Timber Institute (MTI) centered at the University of Toronto. Funding for this publication was generously provided by the Ontario Ministry of Natural Resources and Forestry. Although numerous jurisdictions have established design guides for tall mass timber buildings, architects and engineers often do not have access to the specialized building science knowledge required to deliver well performing mass timber buildings. MTI worked collaboratively with industry, design professionals, academia, researchers and code experts to develop the scope and content of this mass timber building science primer. Although provincially funded, the broader Canadian context underlying this publication was viewed as the most appropriate means of advancing Ontario’s nascent mass timber building industry. This publication also extends beyond Canada and is based on universally applicable principles of building science and how these principles may be used anywhere in all aspects of mass timber building technology. Specifically, these guidelines were developed to guide stakeholders in selecting and implementing appropriate building science practices and protocols to ensure the acceptable life cycle performance of mass timber buildings. It is essential that each representative stakeholder, developer/owner, architect/engineer, supplier, constructor, wood erector, building official, insurer, and facility manager, understand these principles and how to apply them during the design, procurement, construction and in-service phases before embarking on a mass timber building project. When mass timber building technology has enjoyed the same degree of penetration as steel and concrete, this primer will be long outdated and its constituent concepts will have been baked into the training and education of design professionals and all those who fabricate, construct, maintain and manage mass timber buildings. One of the most important reasons this publication was developed was to identify gaps in building science knowledge related to mass timber buildings and hopefully to address these gaps with appropriate research, development and demonstration programs. The mass timber building industry in Canada is still a collection of seedlings that continue to grow and as such they deserve the stewardship of the best available building science knowledge to sustain them until such time as they become a forest that can fend for itself.
Online Access
Free
Resource Link
Less detail

Determination of Coefficients of Friction for Laminated Veneer Lumber on Steel under High Pressure Loads

https://research.thinkwood.com/en/permalink/catalogue2822
Year of Publication
2021
Topic
Connections
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
Dorn, Michael
Habrova, Karolina
Koubek, Radek
Serrano, Erik
Organization
Linnaeus University
Czech University of Life Sciences Prague
Lund University
Publisher
Springer Nature
Year of Publication
2021
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Connections
Keywords
Static Friction
High Pressure
Angle-to-grain
Moisture Content
Steel
Research Status
Complete
Series
Friction
Summary
In this study, static coefficients of friction for laminated veneer lumber on steel surfaces were determined experimentally. The focus was on the frictional behaviors at different pressure levels, which were studied in combination with other influencing parameters: fiber orientation, moisture content, and surface roughness. Coefficients of friction were obtained as 0.10–0.30 for a smooth steel surface and as high as 0.80 for a rough steel surface. Pressure influenced the measured coefficients of friction, and lower normal pressures yielded higher coefficients. The influence of fiber angle was observed to be moderate, although clearly detectable, thereby resulting in a higher coefficient of friction when sliding perpendicular rather than parallel to the grain. Moist specimens contained higher coefficients of friction than oven-dry specimens. The results provide realistic values for practical applications, particularly for use as input parameters of numerical simulations where the role of friction is often wrongfully considered.
Online Access
Free
Resource Link
Less detail

WoodST: An Advanced Modelling Tool for Fire Safety Analysis of Timber Structures

https://research.thinkwood.com/en/permalink/catalogue2827
Year of Publication
2021
Topic
Connections
Design and Systems
Fire
Seismic
Wind
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Chen, Zhiyong
Dagenais, Christian
Ni, Chun
Organization
FPInnovations
Year of Publication
2021
Format
Report
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Connections
Design and Systems
Fire
Seismic
Wind
Keywords
Model
Heat Transfer
Charring Rate
Load-displacement Curve
Failure
Fire Safety
Research Status
Complete
Series
InfoNote
Summary
An advanced modelling tool, WoodST, has been developed for fire safety analysis of timber structures. It is demonstrated that this advanced modelling tool can predict the structural response of LVL beams, glulam bolted connections, OSB-web I-joist and wood-frame floors under forces and fire conditions with an accuracy acceptable to design practitioners (i.e., within 10% of test data). The developed modelling tool can: Fill the gap in terms of suitable models for timber connections, which is an impediment for the design and construction of tall wood buildings; Provide a cost-effective simulation solution compared to costly experimental solutions; and Significantly reduce the cost and shorten the time for the development and/or optimization of new wood-based products and connections.
Online Access
Free
Resource Link
Less detail

WoodWorks Index of Mass Timber Connections

https://research.thinkwood.com/en/permalink/catalogue2876
Year of Publication
2021
Topic
Connections
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
NLT (Nail-Laminated Timber)
MPP (Mass Plywood Panel)
LSL (Laminated Strand Lumber)
Application
Wood Building Systems
Organization
WoodWorks
Year of Publication
2021
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
NLT (Nail-Laminated Timber)
MPP (Mass Plywood Panel)
LSL (Laminated Strand Lumber)
Application
Wood Building Systems
Topic
Connections
Keywords
Aesthetics
Load-Carrying Capacity
Fire Resistance Rating
Quality Assurance
Cost
Constructability
Research Status
Complete
Summary
This index is a compilation of connections used in mass timber construction. Mass timber elements are solid wood pieces with inherent fire resistance due to their mass, as defined in the 2021 International Building Code (IBC). Examples of mass timber include but are not limited to cross laminated timber (CLT), dowel-laminated timber (DLT), nail-laminated timber (NLT), glue-laminated timber (GLT), mass plywood panels (MPP), and structural composite lumber (SCL) products such as laminated veneer lumber (LVL) and laminated strand lumber (LSL). Mass timber can be used as structural floors, roofs, walls, columns and/or beams. The examples in this index illustrate a broad spectrum of connections for use in mass timber construction. Depending on the unique constraints of each project, the connection choice made by the designer may be influenced by aesthetics, load carrying capacity, fire-rating requirements, quality assurance requirements, cost and/or constructability. The purpose of the index is to facilitate the designer’s selection of project appropriate connections.
Online Access
Free
Resource Link
Less detail

Designing timber connections for ductility – A review and discussion

https://research.thinkwood.com/en/permalink/catalogue2949
Year of Publication
2021
Topic
Connections
Application
Wood Building Systems
Author
Ottenhaus, Lisa-Mareike
Jockwer, Robert
Drimmelen, David
Crews, Keith
Organization
The University of Queensland
Chalmers University of Technology
Publisher
Elsevier
Year of Publication
2021
Format
Journal Article
Application
Wood Building Systems
Topic
Connections
Keywords
Ductility
Design Codes
Performance-based Design
Research Status
Complete
Series
Construction and Building Materials
Summary
This paper discusses the design principles of timber connections for ductility with focus on laterally-loaded dowel-type fasteners. Timber connections are critical components of timber structures: not only do they join members, but they also affect load capacity, stiffness, and ductility of the overall system. Moreover, due to the brittle failure behaviour of timber when loaded in tension or shear, they are often the only source of ductility and energy dissipation in the structure in case of overloading, much like a fuse in an electrical circuit. This paper addresses current challenges in connection design for ductility, reviews selected best-practice design approaches to ensure ductility in timber connections, suggests simple performance-based design criteria to design connections for ductility, and aims to stimulate a discussion around potential solutions to implement safe design principles for ductile connections in future design codes and connection testing regimes.
Online Access
Free
Resource Link
Less detail

An integrated design tool for timber plate structures to generate joints geometry, fabrication toolpath, and robot trajectories

https://research.thinkwood.com/en/permalink/catalogue2959
Year of Publication
2021
Topic
Connections
Application
Wood Building Systems
Author
Rogeau, Nicolas
Latteur, Pierre
Weinand, Yves
Organization
École Polytechnique Fédérale de Lausanne
Swiss Federal Institute of Technology in Zurich
Louvain School of Engineering
Publisher
Elsevier
Year of Publication
2021
Format
Journal Article
Application
Wood Building Systems
Topic
Connections
Keywords
Integrated Design
Timber Plate Structures
Wood Joints
Digital Fabrication
CNC Machining
Robotic Assembly
Robotic Arm
Modular Assembly
Assembly Sequence
Insertion Vector
Research Status
Complete
Series
Automation in Construction
Summary
This paper presents an integrated design tool for structures composed of engineered timber panels that are connected by traditional wood joints. Recent advances in computational architecture have permitted to automate the fabrication and assembly of such structures using Computer Numerical Control (CNC) machines and industrial robotic arms. While several large-scale demonstrators have been realized, most developed algorithms are closed-source or project-oriented. The lack of a general framework makes it difficult for architects, engineers and designers to effectively manipulate this innovative construction system. Therefore, this research aims at developing a holistic design tool targeting a wide range of architectural applications. Main achievements include: (1) a new data structure to deal with modular assemblies, (2) an analytical parametrization of the geometry of five timber joints, (3) a method to generate CNC toolpath while integrating fabrication constraints, and (4) a method to automatically compute robot trajectories for a given stack of timber plates.
Online Access
Free
Resource Link
Less detail

Investigation and Optimization of Connections in Timber Assemblies Subjected to Blast Loading

https://research.thinkwood.com/en/permalink/catalogue2509
Year of Publication
2020
Topic
Design and Systems
Connections
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems

Verification of Seismic Resistant Performance of Developed Original Cross-Laminated Timber Core Structure Method by Shaking Table Experiment

https://research.thinkwood.com/en/permalink/catalogue2699
Year of Publication
2020
Topic
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Gunawan, Indra
Moritani, K
Isoda, Hiroshi
Mori, Takuro
Shinohara, M
Noda, T
Hosomi, R
Kurumada, Shinsuke
Makita, T
Publisher
IOP Publishing Ltd
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Connections
Keywords
Core Structure
Shaking Table
Joint
Wall-to-Foundation
Wall-to-Wall
Earthquake
Shear Force
Research Status
Complete
Series
IOP Conference Series: Materials Science and Engineering
Summary
In recent years, development of wood engineering is gradually increasing. Instead of using many wood columns, cross laminated timber is expected for constructing spacious open space building. Since cross-laminated timber has high rigidity and strength, cross-laminated timber is expected to be used as earthquake resistant wall or floor diaphragm that makes the span of building can be increased and the position of the wall can be adjusted openly. In order to optimize the performance of cross-laminated timber for open space building, original cross laminated timber core structure method was developed. In this paper, the development concept of original cross laminated timber core structure method will be explained. In this method, the joint connection for each element such as joint connection for wall-concrete foundation, wall-beam, and wall to hanging wall was also developed. The experiment to verify the strength and rigidity of each connection has been conducted and the result will be described. The shaking table experiment of 3-story open space building constructed by original cross laminated timber structure using varies earthquake waves was conducted. In this experiment natural period, shear force for each floor, story drift, and building response data is taken. The result shows the structure designed by original CLT core structure method is satisfy the requirement based on Japan cross-laminated panel structure regulation.
Online Access
Free
Resource Link
Less detail

73 records – page 1 of 8.