Skip header and navigation

Refine Results By

39 records – page 1 of 4.

Preliminary Assessment of Moisture-Related Properties for Structural Composite Lumber

https://research.thinkwood.com/en/permalink/catalogue1175
Year of Publication
2018
Topic
Mechanical Properties
Moisture
Serviceability
Material
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
OSL (Oriented Strand Lumber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
OSL (Oriented Strand Lumber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Topic
Mechanical Properties
Moisture
Serviceability
Keywords
Water Absorption
Vapour Permeance
Vapour Sorption
Dimensional Stability
Building Envelope
Moisture Management
Language
English
Research Status
Complete
Summary
Fifteen structural composite lumber (SCL) products including laminated-veneer lumber (LVL), laminated strand lumber (LSL), oriented strand lumber (OSL), and parallel strand lumber (PSL) provided by Boise Cascade, LP, West Fraser, and Weyerhaeuser were tested for moisture-related properties in this study, also covering four reference materials: 16-mm Oriented Strand Board (OSB), 19-mm Canadian Softwood Plywood (plywood), 38-mm Douglas-fir and lodgepole pine solid wood. Water absorption, vabour permeance, vapour sorption, and dimensional stability were measured with limited replication by following relevant standards for a purpose of assisting in improving building design and construction, such as hygrothermal modelling of building envelope assemblies, design for vertical differential movement, and on-site moisture management.
Online Access
Free
Resource Link
Less detail

Laminated Strand Lumber (LSL) Reinforced by GFRP; Mechanical and Physical Properties

https://research.thinkwood.com/en/permalink/catalogue1311
Year of Publication
2018
Topic
Mechanical Properties
Design and Systems
Material
LSL (Laminated Strand Lumber)
Application
General Application

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Structural Performance of Post-Tensioned CLT Shear Walls with Energy Dissipators

https://research.thinkwood.com/en/permalink/catalogue1472
Year of Publication
2018
Topic
Design and Systems
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Shear Walls
Author
Chen, Zhiyong
Popovski, Marjan
Symons, Paul
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Shear Walls
Topic
Design and Systems
Mechanical Properties
Seismic
Keywords
Compression Tests
Compression Strength
Energy Dissipation
Post-Tensioned
Pres-Lam
Monotonic Loading
Reverse Cyclic Loading
Language
English
Research Status
Complete
Summary
The latest developments in seismic design philosophy have been geared towards developing of so called "resilient" or "low damage" innovative structural systems that can reduce damage to the structure while offering the same or higher levels of safety to occupants. One such innovative structural system is the Pres-Lam system that is a wood-hybrid system that utilizes post-tensioned (PT) mass timber components in both rigid-frame and wall-based buildings along with various types of energy disspators. To help implement the Pres-Lam system in Canada and the US, information about the system performance made with North American engineered wood products is needed. That information can later be used to develop design guidelines for the designers for wider acceptance of the system by the design community.Several components influence the performance of the Pres-Lam systems: the load-deformation properties of the engineered wood products under compression, load-deformation and energy dissipation properties of the dissipators used, placement of the dissipators in the system, and the level of post-tensioning force. The influence of all these components on the performance of Pres-Lam wall systems under gravity and lateral loads was investigated in this research project. The research project consisted of two main parts: material tests and system tests.
Online Access
Free
Resource Link
Less detail

Bending Properties of Innovative Multi-Layer Composite Laminated Panels

https://research.thinkwood.com/en/permalink/catalogue1985
Year of Publication
2018
Topic
Mechanical Properties
Material
LSL (Laminated Strand Lumber)
OSL (Oriented Strand Lumber)
Application
Beams

Long-term Performance of Timber Concrete Composite Floors

https://research.thinkwood.com/en/permalink/catalogue2081
Year of Publication
2018
Topic
Serviceability
Mechanical Properties
Acoustics and Vibration
Material
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Floors

Mechanical Properties of Innovative, Multi-Layer Composite Laminated Panels

https://research.thinkwood.com/en/permalink/catalogue2178
Year of Publication
2018
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
LSL (Laminated Strand Lumber)
Application
General Application

The Case for Tall Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue835
Edition
Second
Year of Publication
2017
Topic
General Information
Cost
Environmental Impact
Design and Systems
Material
CLT (Cross-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Organization
Michael Green Architecture
Edition
Second
Year of Publication
2017
Country of Publication
Canada
Format
Book
Material
CLT (Cross-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
General Information
Cost
Environmental Impact
Design and Systems
Keywords
FFTT
Tall Wood
Language
English
Research Status
Complete
Summary
The report describes a new structural system in wood that is the first significant challenger to concrete and steel structures since their inception in tall building design more than a century ago. The introduction of these ideas is fundamentally driven by the need to find safe, carbon-neutral and sustainable alternatives to the incumbent structural materials of the urban world. The market for these ideas is quite simply enormous. The proposed solutions have significant capacity to revolutionize the building industry to address the major challenges of climate change, urbanization, sustainable development and world housing needs.
Online Access
Free
Resource Link
Less detail

Use of Sustainable Wood Building Materials in Bosnia and Herzegovina, Slovenia and Sweden

https://research.thinkwood.com/en/permalink/catalogue836
Year of Publication
2017
Topic
Design and Systems
Environmental Impact
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems

Tall Wood Buildings: Design, Construction and Performance

https://research.thinkwood.com/en/permalink/catalogue837
Year of Publication
2017
Topic
Design and Systems
Material
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Author
Green, Michael
Taggart, Jim
Publisher
Birkhäuser
Year of Publication
2017
Country of Publication
Switzerland
Format
Book
Material
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Tall Wood
Language
English
Research Status
Complete
ISBN
978-3-0356-0475-7
Online Access
Payment Required
Resource Link
Less detail

Lateral Load-Resisting System Using Mass Timber Panel for High-Rise Buildings

https://research.thinkwood.com/en/permalink/catalogue1221
Year of Publication
2017
Topic
Seismic
Wind
Design and Systems
Material
LSL (Laminated Strand Lumber)
Application
Shear Walls
Hybrid Building Systems

39 records – page 1 of 4.