Skip header and navigation

43 records – page 1 of 5.

High Energy Performance Six-Storey Wood-Frame Building: Field Monitoring

https://research.thinkwood.com/en/permalink/catalogue1918
Year of Publication
2019
Topic
Energy Performance
Material
Timber (unspecified)
Application
Walls
Wood Building Systems
Roofs
Rooms
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
Timber (unspecified)
Application
Walls
Wood Building Systems
Roofs
Rooms
Topic
Energy Performance
Keywords
Mid-Rise
Durability
Vertical Movement
Indoor Environmental Conditions
Language
English
Research Status
Complete
Summary
This monitoring study aims to generate field performance data from a highly energy efficient building in the west coast climate as part of FPInnovations’ efforts to assist the building sector in developing durable and energy efficient wood-based buildings. A six-storey mixed-use building, with five storeys of wood-frame residential construction on top of concrete commercial space was completed in early 2018 in the City of Vancouver. It was designed to meet the Passive House standard. The instrumentation aimed to gather field data related to the indoor environment, building envelope moisture performance, and vertical movement to address the most critical concerns among practitioners for such buildings.
Online Access
Free
Resource Link
Less detail

Testing R22+ Wood-Frame Walls for Hygrothermal Performance in the Vancouver Climate: Construction and Instrumentation

https://research.thinkwood.com/en/permalink/catalogue1920
Year of Publication
2019
Topic
Energy Performance
Material
Light Frame (Lumber+Panels)
Application
Walls
General Application
Wood Building Systems
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Walls
General Application
Wood Building Systems
Topic
Energy Performance
Keywords
Building Codes
Hygrothermal Models
Durability
Design Tools
Language
English
Research Status
Complete
Summary
This study aims to generate moisture performance data for several configurations of highly insulated woodframe walls meeting the RSI 3.85 (R22 eff) requirement for buildings up to six storeys in the City of Vancouver. The overarching goal is to identify and develop durable exterior wood-frame walls to assist in the design and construction of energy efficient buildings across the country. Wall panels, each measuring 1200 mm wide and 2400 mm tall, form portions of the exterior walls of a test hut located in the rear yard of the FPInnovations laboratory in Vancouver. Twelve wall panels in six types of wall assemblies are undergoing testing in this first phase. This report, first in a series on this study, documents the initial construction and instrumentation.
Online Access
Free
Resource Link
Less detail

Assessment of Energy Saving Potential by Replacing Conventional Materials by Cross Laminated Timber (CLT)—A Case Study of Office Buildings in China

https://research.thinkwood.com/en/permalink/catalogue2010
Year of Publication
2019
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Dong, Yu
Cui, Xue
Yin, Xunzhi
Chen, Yang
Guo, Haibo
Publisher
MDPI
Year of Publication
2019
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
China
Energy Consumption
Office Buildings
Language
English
Research Status
Complete
Series
Applied Sciences
ISSN
2076-3417
Online Access
Free
Resource Link
Less detail

Timber Based Prefabricated Single Modular Housing: A Brief Comparison to the Auto Industry

https://research.thinkwood.com/en/permalink/catalogue2137
Year of Publication
2019
Topic
Design and Systems
Energy Performance
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Timber (unspecified)
Application
Wood Building Systems
General Application

Illustrated Guide R30+ Effective Vaulted & Flat Roofs

https://research.thinkwood.com/en/permalink/catalogue2348
Year of Publication
2019
Topic
Moisture
Energy Performance
Design and Systems
Material
Light Frame (Lumber+Panels)
Application
Roofs
Author
Marleau, Christopher
Higgins, James
Ricketts, Lorne
Roppel, Patrick
Publisher
BC Housing Research Centre
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Roofs
Topic
Moisture
Energy Performance
Design and Systems
Keywords
Vaulted Roofs
Water-Shedding Roofs
Flat Waterproof Membrane Roofs
Thermal Performance
Moisture Management
Air Leakage
Durability
Language
English
Research Status
Complete
Summary
This Illustrated Guide consolidates information on vaulted water-shedding roofs and flat waterproof membrane roofs that are capable of meeting R-30 or greater effective thermal performance when used on low- and mid-rise wood-frame buildings. The guide is intended to be an industry, utility, and government resource with respect to meeting this thermal performance level, while not compromising other aspects of building enclosure performance, including moisture management, air leakage, and durability.
Online Access
Free
Resource Link
Less detail

Use of Cross Laminated Timber (CLT) in Industrial Buildings in Nordic Climate — A Case Study

https://research.thinkwood.com/en/permalink/catalogue2352
Year of Publication
2019
Topic
Design and Systems
Energy Performance
Cost
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application

Modeling the Impact of Assembly Tolerances Regarding Air Leaks on the Energy Efficiency and Durability of a Cross-Laminated Timber Structure

https://research.thinkwood.com/en/permalink/catalogue2365
Year of Publication
2019
Topic
Energy Performance
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Author
Martin, Ulysse
Blanchet, Pierre
Potvin, André
Publisher
BioResources
Year of Publication
2019
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Topic
Energy Performance
Design and Systems
Keywords
Energy Efficiency
Air Leakage
HAM Analysis
Durability Assessment
Language
English
Research Status
Complete
Series
BioResources
Summary
Air leaks have a considerable impact on the energy load and durability of buildings, particularly in cold climates. In wood construction using cross-laminated timber (CLT), air leaks are most likely to be concentrated at the joints between panels and other elements. This study used simulations of heat, air, and moisture transfers through a gap between two CLT panels causing air leakage in winter conditions under a cold climate. A real leakage occurrence was sized to validate the simulations. The aim of this work was to assess the impact on the energy loads and the durability of an air leak, as either infiltration or exfiltration, for different gap widths and relative humidity levels. The results showed that infiltrations had a greater impact on the energy load than exfiltrations but did not pose a threat to the durability, as opposed to exfiltrations. Gap sizes in CLT may vary, but the effect on the energy load was sensitive to the leakage path in the rest of the wall. As expected, a combination of winter exfiltration and a high level of interior relative humidity was particularly detrimental.
Online Access
Free
Resource Link
Less detail

Artificial Neural Network for Assessment of Energy Consumption and Cost for Cross Laminated Timber Office Building in Severe Cold Regions

https://research.thinkwood.com/en/permalink/catalogue1206
Year of Publication
2018
Topic
Energy Performance
Cost
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Dong, Qi
Xing, Kai
Zhang, Hongrui
Publisher
MDPI
Year of Publication
2018
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Cost
Keywords
Energy Consumption
Office Buildings
Severe Cold Regions
Artificial Neural Network
Language
English
Research Status
Complete
Series
Sustainability
ISSN
2071-1050
Summary
This paper aims to develop an artificial neural network (ANN) to predict the energy consumption and cost of cross laminated timber (CLT) office buildings in severe cold regions during the early stage of architectural design. Eleven variables were selected as input variables including...
Online Access
Free
Resource Link
Less detail

Does Timber-Concrete Floor System Save Energy?

https://research.thinkwood.com/en/permalink/catalogue2042
Year of Publication
2018
Topic
Energy Performance
Material
Timber-Concrete Composite
Application
Floors
Hybrid Building Systems
Author
Liu, Ying
Chang, Wen-Shao
Year of Publication
2018
Country of Publication
South Korea
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Floors
Hybrid Building Systems
Topic
Energy Performance
Keywords
Thermal Mass
Simulation
Climate
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Online Access
Free
Resource Link
Less detail

The Environmental Impact of Reused CLT Panels: Study of a Single-Storey Commercial Building In Japan

https://research.thinkwood.com/en/permalink/catalogue2377
Year of Publication
2018
Topic
Energy Performance
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Author
Passarelli, Rafael
Year of Publication
2018
Country of Publication
Korea
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Topic
Energy Performance
Design and Systems
Keywords
Global Warming Potential
Commercial
Panels
Carbon
Design for Reuse
Timber Cascade
Life-Cycle Assessment
LCA
Construction
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Summary
The study investigates the environmental benefits of reusing Cross Laminated Timber (CLT) panels. The Global Warming Potential (GWP) of a single-stored Coffee shop built in 2016 in Kobe city was calculated, considering different CLT reuse ratios, forest land-use and material substitution possibilities. The results showed that as the rate of reused CLT panel increases the total GWP decreases. Moreover, in all cases, the option with smallest GWP is when the surplus wood is used for carbon storage in the forest, revealing the importance of a growing forest for increasing the environmental benefits of timber utilisation. The results suggest the systematic reuse of CLT panels offers a possibility to increase the carbon stock of Japanese Cedar plantation forests and further mitigate the environmental impact of construction.
Online Access
Free
Resource Link
Less detail

43 records – page 1 of 5.