Skip header and navigation

27 records – page 1 of 3.

Hygrothermal Characterization and Modeling of Cross-Laminated Timber in the Building Envelope

https://research.thinkwood.com/en/permalink/catalogue2562
Year of Publication
2020
Topic
Moisture
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Author
Kordziel, Steven
Glass, Samuel
Boardman, Charles
Munson, Robert
Zelinka, Samuel
Pei, Shiling
Tabares-Velasco, Paulo
Year of Publication
2020
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Topic
Moisture
Design and Systems
Keywords
Building Envelope
Hygrothermal Modeling
Moisture Performance
Water Uptake
Hygric Redistribution
Language
English
Research Status
Complete
Series
Building and Environment
Summary
Cross-laminated timber (CLT) is a type of mass timber panel used in floor, wall, and roof assemblies. An important consideration in design and construction of timber buildings is moisture durability. This study characterized the hygrothermal performance of CLT panels with laboratory measurements at multiple scales, field measurements, and modeling. The CLT panels consisted of five layers, four with spruce-pine-fir lumber and one with Douglas-fir lumber. Laboratory characterization involved measurements on small specimens that included material from only one or two layers and large specimens that included all five layers of the CLT panel. Water absorption was measured with panel specimens partially immersed in water, and a new method was developed where panels were exposed to ponded water on the top surface. This configuration gave a higher rate of water uptake than the partial immersion test. The rate of drying was much slower when the wetted surface was covered with an impermeable membrane. Measured hygrothermal properties were implemented in a one-dimensional transient hygrothermal model. Simulation of water uptake indicated that vapor diffusion had a significant contribution in parallel with liquid transport. A simple approximation for liquid transport coefficients, with identical coefficients for suction and redistribution, was adequate for simulating panel-scale wetting and drying. Finally, hygrothermal simulation of a CLT roof assembly that had been monitored in a companion field study showed agreement in most cases within the sensor uncertainty. Although the hygrothermal properties are particular to the wood species and CLT panels investigated here, the modeling approach is broadly applicable.
Online Access
Free
Resource Link
Less detail

Systematic Experimental Investigation to Support the Development of Seismic Performance Factors for Cross Laminated Timber Shear Wall Systems

https://research.thinkwood.com/en/permalink/catalogue1281
Year of Publication
2018
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Amini, Omar
van de Lindt, John
Rammer, Douglas
Pei, Shiling
Line, Philip
Popovski, Marjan
Publisher
ScienceDirect
Year of Publication
2018
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Seismic
Keywords
Quasi-Static
Cyclic Tests
Stiffness
Strength
Deformation
Aspect Ratios
Thickness
Joints
Language
English
Research Status
Complete
Series
Engineering Structures
Summary
In the US, codified seismic design procedure requires the use of seismic performance factors which are currently not available for CLT shear wall systems. The study presented herein focuses on the determination of seismic design factors for CLT shear walls in platform type construction using the FEMA P-695 process. Results from the study will be proposed for implementation in the seismic design codes in the US. The project approach is outlined and selected results of full-scale shear wall testing are presented and discussed. Archetype development, which is required as part of the FEMA P-695 process, is briefly explained with an example. Quasi-static cyclic tests were conducted on CLT shear walls to systematically investigate the effects of various parameters. The key aspect of these tests is that they systematically investigate each potential modelling attribute that is judged within the FEMA P-695 uncertainty quantification process. Boundary constraints and gravity loading were both found to have a beneficial effect on the wall performance, i.e. higher strength and deformation capacity. Higher aspect ratio panels (4:1) demonstrated lower stiffness and substantially larger deformation capacity compared to moderate aspect ratio panels (2:1). However, based on the test results there is likely a lower bound for aspect ratio (at 2:1) where it ceases to benefit deformation capacity of the wall. This is due to the transition of the wall behaviour from rocking to sliding. Phenomenological models were used in modelling CLT shear walls. Archetype selection and analysis procedure was demonstrated and nonlinear time history analysis was conducted using different wall configurations.
Online Access
Free
Resource Link
Less detail

Performance of Wood Adhesive for Cross Laminated Timber Under Elevated Temperatures

https://research.thinkwood.com/en/permalink/catalogue1831
Year of Publication
2018
Topic
Mechanical Properties
Fire
Material
CLT (Cross-Laminated Timber)
Application
General Application
Wood Building Systems

Moisture Monitoring and Modeling of Mass-Timber Building Systems

https://research.thinkwood.com/en/permalink/catalogue1833
Year of Publication
2018
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Application
General Application
Author
Kordziel, Steven
Glass, Samuel
Pei, Shiling
Zelinka, Samuel
Tabares-Velasco, Paulo
Organization
Forest Products Laboratory
Year of Publication
2018
Country of Publication
Korea
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
General Application
Topic
Moisture
Keywords
Moisture Monitoring
Hygrothermal Properties
High-Rise
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 20-23,2018. Seoul, Republic of Korea
Summary
The use of mass timber structural products in tall building applications (6–20 stories) is becoming more common around the world including North America. A potential concern is the environmental wetting of mass timber products during construction because such products may dry out more slowly than light-frame structural lumber, and wood, as an organic material, is susceptible to deterioration at elevated moisture contents. In order to better understand the moisture conditions present in high rise timber constructions, a long-term moisture monitoring program was implemented on an eight story, mixed-use, mass timber framed building in Portland, Oregon. The building was monitored with an array of moisture meters to track moisture content throughout the building’s construction and operation. This paper presents data covering a period just over one year starting from the manufacture of crosslaminated timber (CLT) panels. Hygrothermal properties of CLT samples of the same type used in the building were measured in the laboratory, and wetting and drying experiments on representative CLT samples were conducted. Simulated moisture contents using a one-dimensional hygrothermal model compared reasonably well with laboratory experiments and building site measurements.
Online Access
Free
Resource Link
Less detail

Moisture Monitoring Throughout the Construction and Occupancy of Mass Timber Builidings

https://research.thinkwood.com/en/permalink/catalogue1834
Year of Publication
2018
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
General Application
Author
Zelinka, Samuel
Glass, Samuel
Kordziel, Steven
Tabares-Velasco, Paulo
Pei, Shiling
Organization
Forest Products Laboratory
Publisher
University of Victoria
Year of Publication
2018
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
General Application
Topic
Moisture
Keywords
Dimensional Instability
Microbial Attack
Fastener Corrosion
Cracking
Construction
Language
English
Conference
International Conference on New Horizons in Green Civil Engineering
Research Status
Complete
Notes
April 25-27,2018. Victoria, Canada
Summary
This paper presents preliminary findings from an ongoing research program instrumenting CLT buildings to measure wood moisture content. An overview of the research program is presented along with data from first year of moisture monitoring in an 8-story building in Portland, Oregon. This project measures the wood moisture content throughout the construction cycle, including the fabrication, shipping, staging, and erection of the panels. These preliminary field measurements can help characterize moisture changes in CLT during construction and guide the construction of future CLT buildings.
Online Access
Free
Resource Link
Less detail

Cross-Laminated Timber Rocking Wall with Replaceable Fuses: Validation through Full-Scale Shake Table Testing

https://research.thinkwood.com/en/permalink/catalogue2027
Year of Publication
2018
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls

Executive Report: Full-Scale Shake Table Testing of a Two-Story Mass Timber Building with Resilient Rocking Wall Lateral System

https://research.thinkwood.com/en/permalink/catalogue1151
Year of Publication
2017
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Wood Building Systems

Seismic Design of Cross-Laminated Timber Platform Buildings Using a Coupled Shearwall Concept

https://research.thinkwood.com/en/permalink/catalogue1245
Year of Publication
2017
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Wood Building Systems
Floors
Author
Pei, Shiling
Lenon, Conor
Kingsley, Gregory
Deng, Peng
Publisher
American Society of Civil Engineers
Year of Publication
2017
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Wood Building Systems
Floors
Topic
Design and Systems
Seismic
Keywords
Coupling
Language
English
Research Status
Complete
Series
Journal of Architectural Engineering
Summary
Cross-laminated timber (CLT) is an engineered wood material that was introduced in the last decade as a promising candidate for building wood structures higher than 10 stories. Thus far, a handful of tall residential CLT buildings have been built in low seismic regions around the world...
Online Access
Free
Resource Link
Less detail

Development and Full-Scale Validation of Resilience-Based Seismic Design of Tall Wood Buildings: The NHERI Tallwood Project

https://research.thinkwood.com/en/permalink/catalogue1477
Year of Publication
2017
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Author
Pei, Shiling
van de Lindt, John
Ricles, James
Sause, Richard
Berman, Jeffrey
Ryan, Keri
Dolan, Daniel
Buchanan, Andrew
Robinson, Thomas
McDonnell, Eric
Blomgren, Hans-Erik
Popovski, Marjan
Rammer, Douglas
Year of Publication
2017
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Tall Wood
Post-Tensioned
Rocking Walls
Resilience-Based Seismic Design
Shaking Table Test
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 27-29, 2017, Wellington, New Zealand
Summary
With global urbanization trends, the demands for tall residential and mixed-use buildings in the range of 8~20 stories are increasing. One new structural system in this height range are tall wood buildings which have been built in select locations around the world...
Online Access
Free
Resource Link
Less detail

Energy Consumption Analysis of Multistory Cross-Laminated Timber Residential Buildings: A Comparative Study

https://research.thinkwood.com/en/permalink/catalogue695
Year of Publication
2016
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Khavari, Ali
Pei, Shiling
Tabares-Velasco, Paulo
Publisher
American Society of Civil Engineers
Year of Publication
2016
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
Energy Consumption
Energy Efficiency
Residential
Sensitivity Analysis
Language
English
Research Status
Complete
Series
Journal of Architectural Engineering
Summary
Cross laminated timber (CLT) is a new panelized mass timber product that is suitable for building tall wood buildings (higher than eight stories) because of its structural robustness and superior fire resistance as compared with traditional light-framed ...
Online Access
Free
Resource Link
Less detail

27 records – page 1 of 3.