Skip header and navigation

10 records – page 1 of 1.

Structural Health Monitoring and Post-Occupancy Performance of Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2290
Topic
Serviceability
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Organization
TallWood Design Institute
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Serviceability
Environmental Impact
Keywords
Durability
Monitoring
Livability
Research Status
In Progress
Notes
Project contact is Mariapaola Riggio.
Summary
A key question about new generation taller wood buildings is how they will perform over time in terms of durability and livability. This project will determine how best to measure these qualities by selecting sensors, determining testing and measurement protocols, and implementing testing assemblies in selected CLT buildings in Oregon. Future research will use the knowledge developed through this project to carry out post-occupancy monitoring, generating valuable new insights into building performance.
Less detail

Assessment of Connections in Cross-Laminated Timber Buildings Regarding Structural Robustness

https://research.thinkwood.com/en/permalink/catalogue1948
Year of Publication
2018
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Structural Analysis of CLT Multi-Storey Buildings Assembled with the Innovative X-RAD Connection System: Case-Study of a Tall-Building

https://research.thinkwood.com/en/permalink/catalogue1787
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Polastri, Andrea
Giongo, Ivan
Pacchioli, Stefano
Piazza, Maurizio
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Mechanical Properties
Keywords
Multi-Storey
X-RAD
Fully Threaded Screws
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5868-5877
Summary
The cross laminated timber (CLT) technology is nowadays a well-known construction system, which that can be applied to several typologies of residential and commercial buildings. However some critical issues exist which limit the full development of the CLT construction technology: problems in handling, difficulty in assembling...
Online Access
Free
Resource Link
Less detail

Manufacture of Durable and Stable Cross-Laminated Strand-Veneer Lumber for Mass Timber Construction

https://research.thinkwood.com/en/permalink/catalogue2800
Topic
Mechanical Properties
Environmental Impact
Moisture
Material
CLT (Cross-Laminated Timber)
LSL (Laminated Strand Lumber)
Application
Wood Building Systems
Organization
Washington State University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
LSL (Laminated Strand Lumber)
Application
Wood Building Systems
Topic
Mechanical Properties
Environmental Impact
Moisture
Keywords
Underutilized Species
Small Diameter
Thermal Modification
Mass Timber
Moisture Resistance
Research Status
In Progress
Notes
Project contact is Vikram Yadama at Washington State University
Summary
The broader impact/commercial potential of this PFI project is in development of a commercially-viable process for manufacturing high-performing, durable mass strand timber panels for building construction from low-value and underutilized small-diameter softwood trees, such as from hazardous fuel thinning operations for improved forest health. The broader impacts are: (1) advancement of discovery and understanding while promoting teaching, training, and learning by including students and faculty in the research; (2) enhancement of infrastructure for research and education by establishing collaborations between interdisciplinary, yet complementary academic and industry stakeholders; (3) broadening of research dissemination to enhance understanding by involving industry and academia in the research, publishing project results in diverse media sources, and presenting research results in several formats that will benefit a wide range of forest products industry stakeholders; and (4) improved economic competitiveness of the U.S. forest products industry. In addition, if this proof-of-concept research leads to commercial applications, the benefits to society are: (1) new products with reduced environmental impacts, improved durability, and longer service-life; (2) technology that increases the U.S. forest products industry's competitiveness through creation of new jobs and increased opportunities for potential exports; and (3) increased use of wood, an environmentally-friendly, renewable, sustainable, and carbon-sequestering material. The proposed project addresses challenges facing cross-laminated timber (CLT) panels in mass timber construction. Construction currently requires extreme care to protect CLT panels from moisture while ensuring long-term durability. Although builders take measures to reduce moisture exposure, it is inevitable that the CLT panels will take on water during their service-life. This project addresses these problems by utilizing thermal modification to produce chemical-free, mass timber panels with increased resistance to moisture and decay and improved dimensional stability. The goals are to: (1) evaluate process-performance relationships for thermal modification of small-diameter wood strands, and (2) demonstrate the feasibility of manufacturing high-performance cross-laminated strand-veneer lumber (CLSVL) mass timber panels. The objectives are to: (1) demonstrate the feasibility of utilizing thermally modified laminated strand veneer lumber for production of high-performance CLSVL panels, and (2) determine the potential environmental impacts of the new CLSVL panels. The technical results include validation of a repeatable process for thermally modifying small-diameter pine strands, validation of a method for manufacturing CLSVL panels, verification of physical and mechanical performance of the CLSVL panels, and establishment of commercially-viable process-performance relationships to enable commercial production of the CLSVL mass timber panels.
Resource Link
Less detail

Assessment of Carbon Footprint of Laminated Veneer Lumber Elements in a Six Story Housing - Comparison to a Steel and Concrete Solution

https://research.thinkwood.com/en/permalink/catalogue2135
Year of Publication
2013
Topic
Environmental Impact
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems

Mass Timber Building Science Primer

https://research.thinkwood.com/en/permalink/catalogue2797
Year of Publication
2021
Topic
Design and Systems
Moisture
Fire
Acoustics and Vibration
General Information
Connections
Market and Adoption
Serviceability
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Author
Kesik, Ted
Martin, Rosemary
Organization
Mass Timber Institute
RDH Building Science
Publisher
Mass Timber Institute
Year of Publication
2021
Country of Publication
Canada
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Moisture
Fire
Acoustics and Vibration
General Information
Connections
Market and Adoption
Serviceability
Keywords
Mass Timber
Building Science
Language
English
Research Status
Complete
Summary
The development of this primer commenced shortly after the 2018 launch of the Mass Timber Institute (MTI) centered at the University of Toronto. Funding for this publication was generously provided by the Ontario Ministry of Natural Resources and Forestry. Although numerous jurisdictions have established design guides for tall mass timber buildings, architects and engineers often do not have access to the specialized building science knowledge required to deliver well performing mass timber buildings. MTI worked collaboratively with industry, design professionals, academia, researchers and code experts to develop the scope and content of this mass timber building science primer. Although provincially funded, the broader Canadian context underlying this publication was viewed as the most appropriate means of advancing Ontario’s nascent mass timber building industry. This publication also extends beyond Canada and is based on universally applicable principles of building science and how these principles may be used anywhere in all aspects of mass timber building technology. Specifically, these guidelines were developed to guide stakeholders in selecting and implementing appropriate building science practices and protocols to ensure the acceptable life cycle performance of mass timber buildings. It is essential that each representative stakeholder, developer/owner, architect/engineer, supplier, constructor, wood erector, building official, insurer, and facility manager, understand these principles and how to apply them during the design, procurement, construction and in-service phases before embarking on a mass timber building project. When mass timber building technology has enjoyed the same degree of penetration as steel and concrete, this primer will be long outdated and its constituent concepts will have been baked into the training and education of design professionals and all those who fabricate, construct, maintain and manage mass timber buildings. One of the most important reasons this publication was developed was to identify gaps in building science knowledge related to mass timber buildings and hopefully to address these gaps with appropriate research, development and demonstration programs. The mass timber building industry in Canada is still a collection of seedlings that continue to grow and as such they deserve the stewardship of the best available building science knowledge to sustain them until such time as they become a forest that can fend for itself.
Online Access
Free
Resource Link
Less detail

UK Experience of the Use of Timber as a Low Embodied Carbon Structural Material

https://research.thinkwood.com/en/permalink/catalogue2140
Year of Publication
2014
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems

Structural Characterization of Multi-Storey CLT Buildings Braced with Cores and Additional Shear Walls

https://research.thinkwood.com/en/permalink/catalogue203
Year of Publication
2015
Topic
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Author
Polastri, Andrea
Pozza, Luca
Loss, Christiano
Smith, Ian
Organization
International Network on Timber Engineering Research (INTER)
Year of Publication
2015
Country of Publication
Croatia
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Topic
Seismic
Connections
Keywords
Codes
Eurocode
Mid-Rise
Language
English
Conference
INTER 2015
Research Status
Complete
Notes
August 24-27, 2015, Šibenik, Croatia
Summary
This paper related to elimination of the deficiencies. The behaviour of multi-storey buildings braced with cores and CLT shear walls is examined based on numerical analyses. Two procedure for calibrating numerical analysis models are proposed using information from Eurocode 5 [13] and specific experimental test data. This includes calibration of parameters that characterise connections between CLT panels and other CLT panels, building cores and shear walls. The aim is to make the characterizations of behaviours of connections that reflect how those connections perform within complete multi-storey superstructures, rather than in isolation or as parts of substructures. The earthquake action for cases studied was according to Eurocode 8 [14] and using the appropriate behaviour factor (q factor). Results of analyses of entire buildings are presented in terms of principal elastic periods, base shear and up-lift forces. Discussion addresses key issues associated with behaviour of such systems and modelling them. Obtained results permit creation of appropriate guidelines and rules for design of the aforementioned types of hybrid buildings incorporating CLT wall panels.
Online Access
Free
Resource Link
Less detail

Why Method Matters: Temporal, Spatial and Physical Variations in LCA and Their Impact on Choice of Structural System

https://research.thinkwood.com/en/permalink/catalogue2142
Year of Publication
2018
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Moncaster, Alice
Pomponi, Francesco
Symons, Katherine
Publisher
Elsevier
Year of Publication
2018
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
Embodied Carbon
Embodied Energy
Case Study
Buildings
Residential
Language
English
Research Status
Complete
Series
Energy and Buildings
Online Access
Free
Resource Link
Less detail

High-Rise Timber Buildings As a Climate Change Mitigation Measure – A Comparative LCA of Structural System Alternatives

https://research.thinkwood.com/en/permalink/catalogue1184
Year of Publication
2016
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Author
Skullestad, Julie
Bohne, Rolf
Lohne, Jardar
Publisher
ScienceDirect
Year of Publication
2016
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
Climate Change
Greenhouse Gases
Reinforced Concrete
Multi-Storey
Language
English
Research Status
Complete
Series
Energy Procedia
Summary
This paper reports on a study examining the potential of reducing greenhouse gas (GHG) emissions from the building sector by substituting multi-storey steel and concrete building structures with timber structures. Life cycle assessment (LCA) is applied to compare the climate change impact (CC) of a reinforced concrete (RC) benchmark structure to the CC of an alternative timber structure for four buildings ranging from 3 to 21 storeys. The timber structures are dimensioned to meet the same load criteria as the benchmark structures. The LCA comprises three calculation approaches differing in analysis perspective, allocation methods, and modelling of biogenic CO2 and carbonation of concrete. Irrespective of the assumptions made, the timber structures cause lower CC than the RC structures. By applying attributional LCA, the timber structures are found to cause a CC that is 34-84% lower than the RC structures. The large span is due to different building heights and methodological assumptions. The CC saving per m2 floor area obtained by substituting a RC structure with a timber structure decrease slightly with building height up to 12 storeys, but increase from 12 to 21 storeys. From a consequential LCA perspective, constructing timber structures can result in avoided GHG emissions, indicated by a negative CC. Compared to the RC structures, this equal savings greater than 100%.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.