Skip header and navigation

10 records – page 1 of 1.

Assessment of Connections in Cross-Laminated Timber Buildings Regarding Structural Robustness

https://research.thinkwood.com/en/permalink/catalogue1948
Year of Publication
2018
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Structural Analysis of CLT Multi-Storey Buildings Assembled with the Innovative X-RAD Connection System: Case-Study of a Tall-Building

https://research.thinkwood.com/en/permalink/catalogue1787
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Polastri, Andrea
Giongo, Ivan
Pacchioli, Stefano
Piazza, Maurizio
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Mechanical Properties
Keywords
Multi-Storey
X-RAD
Fully Threaded Screws
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5868-5877
Summary
The cross laminated timber (CLT) technology is nowadays a well-known construction system, which that can be applied to several typologies of residential and commercial buildings. However some critical issues exist which limit the full development of the CLT construction technology: problems in handling, difficulty in assembling...
Online Access
Free
Resource Link
Less detail

Finite Element Modeling for Vibration Transmission in a Cross Laminated Timber Structure

https://research.thinkwood.com/en/permalink/catalogue1633
Year of Publication
2016
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Vardaxis, Nikolaos-Georgios
Hagberg, Klas
Bard, Delphine
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Sweden
Numerical Model
Finite Element Model
Impact Noise Transmission
Impact Sound
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2953-2962
Summary
This paper deals with a certain type of C.L.T. (Cross Laminated Timber) construction, in a residential building in Fristad, Sweden. The objective is to study impact noise transmission, at the lower frequency range (10-200 Hz), where wooden dwellings perform inefficiently, in terms of acoustic quality. The vibrational behavior of lightweight structures and specifically a multilayered floor separating two vertically adjacent bedrooms are investigated. A numerical model of the multilayered test plate, which includes sound insulation and vibration isolation layers, is developed using the Finite Element Method (F.E.M.) in commercial software. The design process, the analysis and improvement of the calculated outcome concerning accuracy and complexity are of interest. In situ vibration measurements were also performed so as to evaluate the structures dynamic behavior in reality and consequently the validity of the modelled results. The whole process from design to evaluation is discussed thoroughly, where uncertainties of the complex F.E.M. model and the approximations of the real structure are analyzed. Numerical comparisons are presented including mechanical mobility and impact noise transmission results. The overall aim is to set up a template of calculations that can be used as a prediction tool in the future by the industry and researchers.
Online Access
Free
Resource Link
Less detail

Mass Timber Building Science Primer

https://research.thinkwood.com/en/permalink/catalogue2797
Year of Publication
2021
Topic
Design and Systems
Moisture
Fire
Acoustics and Vibration
General Information
Connections
Market and Adoption
Serviceability
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Author
Kesik, Ted
Martin, Rosemary
Organization
Mass Timber Institute
RDH Building Science
Publisher
Mass Timber Institute
Year of Publication
2021
Country of Publication
Canada
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Moisture
Fire
Acoustics and Vibration
General Information
Connections
Market and Adoption
Serviceability
Keywords
Mass Timber
Building Science
Language
English
Research Status
Complete
Summary
The development of this primer commenced shortly after the 2018 launch of the Mass Timber Institute (MTI) centered at the University of Toronto. Funding for this publication was generously provided by the Ontario Ministry of Natural Resources and Forestry. Although numerous jurisdictions have established design guides for tall mass timber buildings, architects and engineers often do not have access to the specialized building science knowledge required to deliver well performing mass timber buildings. MTI worked collaboratively with industry, design professionals, academia, researchers and code experts to develop the scope and content of this mass timber building science primer. Although provincially funded, the broader Canadian context underlying this publication was viewed as the most appropriate means of advancing Ontario’s nascent mass timber building industry. This publication also extends beyond Canada and is based on universally applicable principles of building science and how these principles may be used anywhere in all aspects of mass timber building technology. Specifically, these guidelines were developed to guide stakeholders in selecting and implementing appropriate building science practices and protocols to ensure the acceptable life cycle performance of mass timber buildings. It is essential that each representative stakeholder, developer/owner, architect/engineer, supplier, constructor, wood erector, building official, insurer, and facility manager, understand these principles and how to apply them during the design, procurement, construction and in-service phases before embarking on a mass timber building project. When mass timber building technology has enjoyed the same degree of penetration as steel and concrete, this primer will be long outdated and its constituent concepts will have been baked into the training and education of design professionals and all those who fabricate, construct, maintain and manage mass timber buildings. One of the most important reasons this publication was developed was to identify gaps in building science knowledge related to mass timber buildings and hopefully to address these gaps with appropriate research, development and demonstration programs. The mass timber building industry in Canada is still a collection of seedlings that continue to grow and as such they deserve the stewardship of the best available building science knowledge to sustain them until such time as they become a forest that can fend for itself.
Online Access
Free
Resource Link
Less detail

Serviceability of Next-Generation Wood Buildings: Sound Insulation Performance of Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue402
Year of Publication
2014
Topic
Acoustics and Vibration
Serviceability
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Floors
Walls
Author
Hu, Lin
Organization
FPInnovations
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Floors
Walls
Topic
Acoustics and Vibration
Serviceability
Keywords
Apparent Sound Insulation Class
Field Sound Insulation Class
Apparently Sound Transmission Class
Field Sound Transmission Class
Language
English
Research Status
Complete
Summary
This report documents apparent/field impact insulation class (AIIC/FIIC) ratings and apparent/field sound transmission class (ASTC/FSTC) ratings for a large number of light-frame wood-joisted floors, cross-laminated timber floors (CLT), massive glulam floors, and a wood-concrete composite floor. The report includes various construction details involving finishings, membranes under finishings, toppings, underlayment materials for toppings, and drywall ceilings. This report also documents ASTC/FSTC ratings for some light-frame wood stud walls and CLT walls. The informal subjective evaluation of field floors and walls by FPInnovations staff, and by occupants, revealed that, if a FSTC or FIIC rating is below 45, occupants could clearly hear sound generated by their neighbor’s normal activities. If a FSTC or FIIC rating is above 50, occupants could still hear "muffled" sound generated by their neighbor’s normal activities, but do not hear it as clearly. If a FSTC or FIIC rating is above 60, occupants could not hear any sound generated by their neighbor’s activities, except when there is a lightweight floor with a carpet. In that case, low frequency footsteps could be heard even if the FIIC was above 60.
Online Access
Free
Resource Link
Less detail

In-Situ Testing of the Wood Innovation and Design Centre for Serviceability Performance

https://research.thinkwood.com/en/permalink/catalogue1183
Year of Publication
2018
Topic
Serviceability
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Serviceability
Acoustics and Vibration
Keywords
Vibration Performance
Sound Insulation
Natural Frequencies
Damping Ratios
Ambient Vibration Testing
Apparent Sound Transmission Class
Apparent Impact Insulation Class
Language
English
Research Status
Complete
Summary
Three performance attributes of a building for serviceability performance are 1) vibration of the whole building structure, 2) vibration of the floor system, typically in regards to motions in a localized area within the entire floor plate, and 3) sound insulation performance of the wall and floor assemblies. Serviceability performance of a building is important as it affects the comfort of its occupants and the functionality of sensitive equipment as well. Many physical factors influence these performances. Designers use various parameters to account for them in their designs and different criteria to manage these performances. The overall objectives of this stud were threefold: 1. The vibration performance tests were to experimentally determine the dynamic properties, e.g., natural frequencies (periods) and damping ratios of the WIDC building through ambient vibration testing on: o the bare structure in 2014, o the finished building upon completion of the construction with occupants in 2015, and o the finished building after 3 years of service in 2017. 2. The floor vibration tests were to evaluate vibration performance of the innovative CLT floor based on the bare floor fundamental natural frequency, 1 kN static deflection, and subjective evaluation. 3. The sound transmission tests were to determine the Apparent Sound Transmision Class (ASTC) and Apparent Impact Insulation Class (AIIC) of selected innovative CLT floor assemblies.
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: In-Situ Testing of the Origine 13-Storey Building for Vibration and Acoustic Performances

https://research.thinkwood.com/en/permalink/catalogue1474
Year of Publication
2018
Topic
Acoustics and Vibration
Serviceability
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Topic
Acoustics and Vibration
Serviceability
Keywords
Origine
Natural Frequencies
Damping Ratios
Sound Insulation
Ambient Vibration Tests
Static Deflection
Apparent Sound Transmission Class
Apparent Impact Insulation Class
Language
English
Research Status
Complete
Summary
Serviceability performance studied covers three different performance attributes of a building. These attributes are 1) vibration of the whole building structure, 2) vibration of the floor system, typically in regards to motions in a localized area within the entire floor plate, and 3) sound insulation performance of the wall and floor assemblies. Serviceability performance of a building is important as it affects the comfort of its occupants and the functionality of sensitive equipment as well. Many physical factors influence these performances. Designers use various parameters to account for them in their designs and different criteria to manage these performances. Lack of data, knowledge and experience of sound and vibration performance of tall wood buildings is one of the issues related to design and construction of tall wood buildings. In order to bridge the gaps in the data, knowledge, and experience of sound and vibration performance of tall wood buildings, FPInnovations conducted a three-phase performance testing on the Origine 13-storey CLT building of 40.9 m tall in Quebec city. It was the tallest wood building in Eastern Canada in 2017.
Online Access
Free
Resource Link
Less detail

Serviceability of New Generation Wood Buildings: Case Study of Two Cross-Laminated Timber (CLT) Buildings

https://research.thinkwood.com/en/permalink/catalogue2644
Year of Publication
2013
Topic
Serviceability
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Author
Hu, Lin
Organization
FPInnovations
Year of Publication
2013
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Topic
Serviceability
Acoustics and Vibration
Keywords
Ambient Vibration Tests
Vibration Performance
Sound Insulation
Language
English
Research Status
Complete
Summary
FPInnovations launched the “Next Generation Building Systems” research program to support the expansion and diversification of wood into new markets. “Next Generation Wood Buildings” can be described as buildings that implement design and construction practices, and use innovative wood-based materials and systems beyond those defined and addressed in current building codes. As part of this program, the serviceability research focuses on addressing issues related to floor and building vibrations, sound transmission and creep. CLT is a next generation wood building material, which is a promising alternative to concrete slabs. To facilitate wood expansion into the market traditionally dominated by steel and concrete, several CLT buildings have been designed or built. Taking this opportunity, we conducted this study on two CLT buildings in the province of Quebec (i.e.,Desbiens and Chibougamau) to collect data that will form a database for the development of design provisions and installation guides for controlling vibrations and noise in CLT floors and buildings. The study also provides some information to designers and architects to strengthen their confidence in using CLT in their building projects. It is our hope that the collaboration through this study demonstrates to both designers and users of CLT buildings that if we work together, we can build good quality CLT buildings. During the construction, ambient vibration tests were conducted on the two CLT buildings to determine their natural frequencies (periods) and damping ratios. Vibration performance tests were conducted on selected CLT floors to determine their frequencies and static deflections. ASTM standard sound insulation tests were conducted on the selected CLT walls and floors in Chibougamau CLT building to develop the sound insulation solutions. After the two CLT buildings were completed, ASTM sound insulation tests were conducted in the selected units to determine the Field Sound Transmission Class (FSTC) of the finished floors and walls, and the Field Impact Insulation Class (FIIC) of the finished floors. We found that in general, the vibration performance of these two CLT buildings and their floor vibration performance are functional. The efforts made by the design engineers, the architects, and the contractors to make it happen are commendable, considering the lack of design provisions and guidelines in building codes for controlling vibrations in such innovative wood floor and buildings. The sound insulation of the selected units in Chibougamau building was very satisfactory. This confirmed that with proper design, construction, and installation of the sound insulation solutions studied in this report, CLT floors, walls and buildings can achieve very good sound insulation. Some specific recommendations for CLT building sound insulation: If flanking paths can be minimized, then it is expected that better sound insulation than what we measured on the CLT floors during the building construction will be achieved ; Increasing the stud spacing from 400mm to 600mm for the wood stud walls enhances the airborne sound insulation of the current wood stud-CLT wall assemblies tested in this study ; Decoupling ceiling from the structure frame and from the CLT floors is a significant factor for cost-effective sound insulation solutions ; Selection of solutions for FSTC and FIIC above fifty (50) for non-carpeted CLT floors will ensure the satisfaction of the majority of occupants ; Conducting subjective evaluation is useful to ensure occupants satisfaction ; For implementation of the sound insulation solutions for floating floors, it is necessary to consult wood flooring and ceramic tiles installation guides for floating the flooring.
Online Access
Free
Resource Link
Less detail

Structural Characterization of Multi-Storey CLT Buildings Braced with Cores and Additional Shear Walls

https://research.thinkwood.com/en/permalink/catalogue203
Year of Publication
2015
Topic
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Author
Polastri, Andrea
Pozza, Luca
Loss, Christiano
Smith, Ian
Organization
International Network on Timber Engineering Research (INTER)
Year of Publication
2015
Country of Publication
Croatia
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Topic
Seismic
Connections
Keywords
Codes
Eurocode
Mid-Rise
Language
English
Conference
INTER 2015
Research Status
Complete
Notes
August 24-27, 2015, Šibenik, Croatia
Summary
This paper related to elimination of the deficiencies. The behaviour of multi-storey buildings braced with cores and CLT shear walls is examined based on numerical analyses. Two procedure for calibrating numerical analysis models are proposed using information from Eurocode 5 [13] and specific experimental test data. This includes calibration of parameters that characterise connections between CLT panels and other CLT panels, building cores and shear walls. The aim is to make the characterizations of behaviours of connections that reflect how those connections perform within complete multi-storey superstructures, rather than in isolation or as parts of substructures. The earthquake action for cases studied was according to Eurocode 8 [14] and using the appropriate behaviour factor (q factor). Results of analyses of entire buildings are presented in terms of principal elastic periods, base shear and up-lift forces. Discussion addresses key issues associated with behaviour of such systems and modelling them. Obtained results permit creation of appropriate guidelines and rules for design of the aforementioned types of hybrid buildings incorporating CLT wall panels.
Online Access
Free
Resource Link
Less detail

Ambient Vibration Testing and Modal Analysis of Multi-Storey Cross Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue237
Year of Publication
2014
Topic
Acoustics and Vibration
Wind
Serviceability
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Reynolds, Thomas
Bolmsvik, Åsa
Vessby, Johan
Chang, Wen-Shao
Harris, Richard
Bawcombe, Jonathan
Bregulla, Julie
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Wind
Serviceability
Keywords
Modal Properties
Multi-Storey
Damping
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The ambient movement of three modern multi-storey timber buildings has been measured and used to determine modal properties. This information, obtained by a simple, unobtrusive series of tests, can give insights into the structural performance of these forms of building, as well as providing information for the design of future, taller timber buildings for dynamic loads. For two of the buildings, the natural frequency has been related to the lateral stiffness of the structure, and compared with that given by a simple calculation. In future tall timber buildings, a new design criterion is expected to become important: deflection and vibration serviceability under wind load. For multi-storey timber buildings there is currently no empirical basis to estimate damping for calculation of wind-induced vibration, and there is little information for stiffness under wind load. This study therefore presents a method to address those gaps in knowledge.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.