Skip header and navigation

6 records – page 1 of 1.

Assessment of Connections in Cross-Laminated Timber Buildings Regarding Structural Robustness

https://research.thinkwood.com/en/permalink/catalogue1948
Year of Publication
2018
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Dynamical Properties of a Large Glulam Truss for a Tall Timber Building

https://research.thinkwood.com/en/permalink/catalogue2036
Year of Publication
2018
Topic
Wind
Mechanical Properties
Connections
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Trusses

Experimental and Numerical Analysis of Flexible Polymer Connections for CLT Buildings

https://research.thinkwood.com/en/permalink/catalogue2057
Year of Publication
2018
Topic
Connections
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Group Effect for Self-Tapping-Screws in CLT Subjected to Shear and Axial Loads

https://research.thinkwood.com/en/permalink/catalogue1975
Year of Publication
2018
Topic
Design and Systems
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems

Strength and Stiffness of CLT Shear Walls in Platform Construction

https://research.thinkwood.com/en/permalink/catalogue1976
Year of Publication
2018
Topic
Design and Systems
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems

Seismic Assessment of a Heavy-Timber Frame Structure with Ring-Doweled Moment-Resisting Connections

https://research.thinkwood.com/en/permalink/catalogue1383
Year of Publication
2018
Topic
Seismic
Connections
Material
Solid-sawn Heavy Timber
Application
Wood Building Systems
Author
Rodrigues, Leonardo
Branco, Jorge
Neves, Luís
Barbosa, André
Publisher
Springer Netherlands
Year of Publication
2018
Country of Publication
Netherlands
Format
Journal Article
Material
Solid-sawn Heavy Timber
Application
Wood Building Systems
Topic
Seismic
Connections
Keywords
Ring-Doweled Connections
Seismic Performance
Eurocode 5
Eurocode 8
Ductility
Probabilistic Approach
Q Factor
Fragility Curves
Language
English
Research Status
Complete
Series
Bulletin of Earthquake Engineering
ISSN
1573-1456
Summary
The performance of heavy-timber structures in earthquakes depends strongly on the inelastic behavior of the mechanical connections. Nevertheless, the nonlinear behavior of timber structures is only considered in the design phase indirectly through the use of an R-factor or a q-factor, which reduces the seismic elastic response spectrum. To improve the estimation of this, the seismic performance of a three-story building designed with ring-doweled moment resisting connections is analyzed here. Connections and members were designed to fulfill the seismic detailing requirements present in Eurocode 5 and Eurocode 8 for high ductility class structures. The performance of the structure is evaluated through a probabilistic approach, which accounts for uncertainties in mechanical properties of members and connections. Nonlinear static analyses and multi-record incremental dynamic analyses were performed to characterize the q-factor and develop fragility curves for different damage levels. The results indicate that the detailing requirements of Eurocode 5 and Eurocode 8 are sufficient to achieve the required performance, even though they also indicate that these requirements may be optimized to achieve more cost-effective connections and members. From the obtained fragility curves, it was verified that neglecting modeling uncertainties may lead to overestimation of the collapse capacity.
Online Access
Free
Resource Link
Less detail

6 records – page 1 of 1.