Skip header and navigation

10 records – page 1 of 1.

Assessment of Connections in Cross-Laminated Timber Buildings Regarding Structural Robustness

https://research.thinkwood.com/en/permalink/catalogue1948
Year of Publication
2018
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Structural Analysis of CLT Multi-Storey Buildings Assembled with the Innovative X-RAD Connection System: Case-Study of a Tall-Building

https://research.thinkwood.com/en/permalink/catalogue1787
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Polastri, Andrea
Giongo, Ivan
Pacchioli, Stefano
Piazza, Maurizio
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Mechanical Properties
Keywords
Multi-Storey
X-RAD
Fully Threaded Screws
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5868-5877
Summary
The cross laminated timber (CLT) technology is nowadays a well-known construction system, which that can be applied to several typologies of residential and commercial buildings. However some critical issues exist which limit the full development of the CLT construction technology: problems in handling, difficulty in assembling...
Online Access
Free
Resource Link
Less detail

Mass Timber Building Science Primer

https://research.thinkwood.com/en/permalink/catalogue2797
Year of Publication
2021
Topic
Design and Systems
Moisture
Fire
Acoustics and Vibration
General Information
Connections
Market and Adoption
Serviceability
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Author
Kesik, Ted
Martin, Rosemary
Organization
Mass Timber Institute
RDH Building Science
Publisher
Mass Timber Institute
Year of Publication
2021
Country of Publication
Canada
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Moisture
Fire
Acoustics and Vibration
General Information
Connections
Market and Adoption
Serviceability
Keywords
Mass Timber
Building Science
Language
English
Research Status
Complete
Summary
The development of this primer commenced shortly after the 2018 launch of the Mass Timber Institute (MTI) centered at the University of Toronto. Funding for this publication was generously provided by the Ontario Ministry of Natural Resources and Forestry. Although numerous jurisdictions have established design guides for tall mass timber buildings, architects and engineers often do not have access to the specialized building science knowledge required to deliver well performing mass timber buildings. MTI worked collaboratively with industry, design professionals, academia, researchers and code experts to develop the scope and content of this mass timber building science primer. Although provincially funded, the broader Canadian context underlying this publication was viewed as the most appropriate means of advancing Ontario’s nascent mass timber building industry. This publication also extends beyond Canada and is based on universally applicable principles of building science and how these principles may be used anywhere in all aspects of mass timber building technology. Specifically, these guidelines were developed to guide stakeholders in selecting and implementing appropriate building science practices and protocols to ensure the acceptable life cycle performance of mass timber buildings. It is essential that each representative stakeholder, developer/owner, architect/engineer, supplier, constructor, wood erector, building official, insurer, and facility manager, understand these principles and how to apply them during the design, procurement, construction and in-service phases before embarking on a mass timber building project. When mass timber building technology has enjoyed the same degree of penetration as steel and concrete, this primer will be long outdated and its constituent concepts will have been baked into the training and education of design professionals and all those who fabricate, construct, maintain and manage mass timber buildings. One of the most important reasons this publication was developed was to identify gaps in building science knowledge related to mass timber buildings and hopefully to address these gaps with appropriate research, development and demonstration programs. The mass timber building industry in Canada is still a collection of seedlings that continue to grow and as such they deserve the stewardship of the best available building science knowledge to sustain them until such time as they become a forest that can fend for itself.
Online Access
Free
Resource Link
Less detail

Structural Characterization of Multi-Storey CLT Buildings Braced with Cores and Additional Shear Walls

https://research.thinkwood.com/en/permalink/catalogue203
Year of Publication
2015
Topic
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Author
Polastri, Andrea
Pozza, Luca
Loss, Christiano
Smith, Ian
Organization
International Network on Timber Engineering Research (INTER)
Year of Publication
2015
Country of Publication
Croatia
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Topic
Seismic
Connections
Keywords
Codes
Eurocode
Mid-Rise
Language
English
Conference
INTER 2015
Research Status
Complete
Notes
August 24-27, 2015, Šibenik, Croatia
Summary
This paper related to elimination of the deficiencies. The behaviour of multi-storey buildings braced with cores and CLT shear walls is examined based on numerical analyses. Two procedure for calibrating numerical analysis models are proposed using information from Eurocode 5 [13] and specific experimental test data. This includes calibration of parameters that characterise connections between CLT panels and other CLT panels, building cores and shear walls. The aim is to make the characterizations of behaviours of connections that reflect how those connections perform within complete multi-storey superstructures, rather than in isolation or as parts of substructures. The earthquake action for cases studied was according to Eurocode 8 [14] and using the appropriate behaviour factor (q factor). Results of analyses of entire buildings are presented in terms of principal elastic periods, base shear and up-lift forces. Discussion addresses key issues associated with behaviour of such systems and modelling them. Obtained results permit creation of appropriate guidelines and rules for design of the aforementioned types of hybrid buildings incorporating CLT wall panels.
Online Access
Free
Resource Link
Less detail

Lateral Behavior Of Post-Tensioned Cross Laminated Timber Walls Using Finite Element Analysis

https://research.thinkwood.com/en/permalink/catalogue259
Year of Publication
2014
Topic
Connections
Wind
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Van de Kuilen, Jan-Willem
Xia, Zhouyan
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Wind
Keywords
Finite Element Model
Lateral Loads
Post-Tensioning
Steel Bars
High-Rise
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Cross laminated timber (CLT) has been rapidly developed and utilized for multi-rise constructions in recent years, even high-rise CLT buildings with 40 stories have been proposed and designed. A use of unbonded post-tensioning (PT) steel bars through over CLT walls of the high-rise CLT buildings to take up the tensile forces produced by wind load has been considered, following the regulations of unbonded post-tensioned (UPT) concrete walls. This paper introduces a finite element model to simulate the nonlinear lateral load behavior of the UPT high-rise CLT buildings with elastic connections between the CLT elements. The analysis results indicate that the unbonded PT bars can effectively reduce the lateral displacement of the high-rise CLT building. While compared with a theoretical full rigid CLT model, the advanced model is found to be more accurate for estimating the response of UPT high-rise CLT building under horizontal load.
Online Access
Free
Resource Link
Less detail

High Performance Cross-Laminated-Timber Shear Connection with Self-Tapping Screw Assemblies

https://research.thinkwood.com/en/permalink/catalogue504
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Danzig, Ilana
Closen, Maximilian
Tannert, Thomas
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Mechanical Properties
Keywords
Self-Tapping Screws
Panels
Full Scale
Quasi-Static
Reverse Cyclic Loading
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The research presented in this paper examines the performance of a shear connection using self-tapping screws (STS) in 3-ply Cross-Laminated Timber (CLT) panels. CLT panels were connected with STS assemblies at an inclined angle in two directions. The capacity of the STS assemblies was tested for the purpose of designing a CLT roof diaphragm of a large storage facility where a high-performance and low-manufacturing-cost solution was required. A total of eleven full-scale specimens were subjected to quasi-static and reversed-cyclic shear loading. Resulting forcedisplacement and hysteretic curves were used to determine an equivalent energy elastic-plastic curve based on ASTM E2126-11 procedures to estimate assembly yield strength, yield displacement, and ductility ratio. The performance in terms of strength and stiffness was excellent, and the STS provided the required ductility for the system to be used in seismic applications. Static yield strength averaged 80kN/m with an average ductility ratio of 7.7 while cyclic yield strength averaged 68kN/m with an average ductility ratio of 4.1. The data obtained allows engineers to specify low-cost lateral load resisting connection systems for large scale CLT structures.
Online Access
Free
Resource Link
Less detail

Assessment of Disproportionate Collapse for Multi Storey Cross Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1664
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Mpidi Bita, Hercend
Currie, Neil
Tannert, Thomas
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Mechanical Properties
Keywords
Rotational Stiffness
Multi-Storey
Ductility
Loading
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3725-3733
Summary
This paper investigates the risk of disproportionate collapse following extreme loading events. The methodology mimics a sudden removal of a loadbearing wall of a twelve-storey CLT building. The ductility-demand from the dynamic simulation is checked against the ductility supplied by the structural components and their connections. The analyses focus on rotational stiffness (k) of the joints by considering three different sub-structural idealisations according to the required modelling details and the feasibility of model reductions. To resist the imposed dynamic forces, the required k-values may be too large to be practically achieved by means of off-the-shelf brackets and screw connections. Improved structural detailing as well as adequate thickness of structural elements need to be considered in order to reduce the probability of disproportionate collapse.
Online Access
Free
Resource Link
Less detail

Development of Glulam Column-RC Base Connection System for Multi-Stories Large-Scale Timber Building

https://research.thinkwood.com/en/permalink/catalogue1774
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Columns
Wood Building Systems
Author
Sato, Nozomi
Uetsuki, Kazuki
Tanaka, Kei
Hagino, Tsuyoshi
Noda, Kenji
Satomura, Norihiko
Koshihara, Mikio
Inoue, Masafumi
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Columns
Wood Building Systems
Topic
Connections
Mechanical Properties
Keywords
Loading Tests
Yield Moment
Multi-Storey
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5393-5400
Summary
In Japan, the moment resistance connections of large-scale timber building are inefficiency in terms of time and economic, because connections and column base hardware are custom-made to obtain the required performance. To improve this problem, it is necessary to unify standardization of their connection. At first, in this study, we focused on column-base connection, the horizontal...
Online Access
Free
Resource Link
Less detail

System Solutions for Point Supported Wooden Flat Slabs

https://research.thinkwood.com/en/permalink/catalogue1784
Year of Publication
2016
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Zingerle, Philipp
Maderebner, Roland
Flach, Michael
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Mechanical Properties
Connections
Keywords
Point-Supported
Stiffness
Load Carrying Capacity
Multi-Story
Reinforcement
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5663-5668
Summary
The challenge with point-supported flat slabs is the stress concentration at the supporting points. The small strength of the wood perpendicular to the grain should not reduce the load carrying capacity of the CLT –Panels. Therefore, there are some existing state of the art methods of reinforcement with self-tapping screws, which open up the...
Online Access
Free
Resource Link
Less detail

Experimental Campaign for the Mechanical Characterization of Connection Systems in the Seismic Design of Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1511
Year of Publication
2016
Topic
Connections
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Casagrande, Daniele
Polastri, Andrea
Sartori, Tiziano
Loss, Cristiano
Chiodega, Manuela
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Connections
Mechanical Properties
Seismic
Keywords
Capacity
Stiffness
Ductility
Cyclic Loads
Monotonic Loads
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 353-361
Summary
The seismic behaviour of timber buildings is strongly related to the energy dissipation capacity of connections. According to Standard, since timber is characterized by a brittle failure when subjected to tensile or bending actions, the dissipative zones shall be located in joints and connections, whereas timber members themselves shall be regarded as behaving elastically. In order to ensure the global structural ductility, connections and joints shall be able to deform plastically at the associated ductility level without a significant reduction of their resistance under cyclic loads. The paper deals with an experimental campaign for the mechanical characterization of timber connection systems, commonly adopted in Europe, in the seismic design of timber buildings. The main objective was to find out the capacity, the stiffness and the ductility of the tested connections and to investigate their loss of capacity under cyclic loads. The obtained results were analysed in order to understand if the current provisions, reported in Standard for the different typology of traditional connectors, can be adopted in case of connection systems used for seismic purposes, such as hold-down or angle brackets. Their interaction with other structural parts was then investigated testing six fullscale timber walls, subjected to monotonic and cyclic loads. The tests were carried out at the Laboratory of Materials and Structural Testing of the Trento University (Italy).
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.