Skip header and navigation

3 records – page 1 of 1.

Capacity-Based Design for Cross-Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1255
Year of Publication
2017
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Author
Shahnewaz, Md
Tannert, Thomas
Alam, Shahria
Popovski, Marjan
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2017
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Topic
Mechanical Properties
Connections
Keywords
In-Plane Stiffness
Strength
Non-Linear Springs
Finite Element Analysis
Hysteretic Behaviour
Cyclic Loading
Language
English
Conference
Structures Congress 2017
Research Status
Complete
Notes
April 6–8, 2017, Denver, Colorado
Summary
The use of cross-laminated timber (CLT) in residential and non-residential buildings is becoming increasingly popular in North America. While the 2016 supplement to the 2014 edition of the Canadian Standard for Engineering Design in Wood, CSAO86, provides provisions for CLT structures used in platform type applications, it does not provide guidance for the in-plane stiffness and strength of CLT shearwalls. The research presented in this paper investigated the in-plane stiffness and strength of CLT shearwalls with different connections for platform-type construction. Finite element analyses were conducted where the CLT panels were modelled as an orthotropic elastic material, and non-linear springs were used for the connections. The hysteretic behaviour of the connections under cyclic loading was calibrated from quasi-static tests; the full model of wall assemblies was calibrated using experimental tests on CLT shearwalls. A parametric study was conducted that evaluated the change of strength and stiffness of walls with the change in a number of connectors. Finally, a capacity-based design procedure is proposed that provides engineers with guidance for designing platform-type CLT buildings. The philosophy of the procedure is to design the CLT buildings such that all non-linear deformations and energy dissipation occurs in designated connections, while all other connections and the CLT panels are designed with sufficient over-strength to remain linear elastic.
Online Access
Payment Required
Resource Link
Less detail

Strength and Stiffness of CLT Shear Walls in Platform Construction

https://research.thinkwood.com/en/permalink/catalogue1976
Year of Publication
2018
Topic
Design and Systems
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems

Valuation of the Composite Action of Lightweight and Prefabricated Concrete-Wood Floors for Multi-Storey Buildings

https://research.thinkwood.com/en/permalink/catalogue2666
Topic
Connections
Design and Systems
Mechanical Properties
Material
Timber-Concrete Composite
Application
Floors
Wood Building Systems
Organization
Université Laval
Country of Publication
Canada
Material
Timber-Concrete Composite
Application
Floors
Wood Building Systems
Topic
Connections
Design and Systems
Mechanical Properties
Keywords
Finite Element Analysis
Span Limits
Shear Test
Bending Test
Research Status
In Progress
Notes
Project contact is Luca Sorelli at Université Laval
Summary
This project aims to develop a new precast wood / concrete floor system that can push the span limits in multi-storey wood buildings. The multidisciplinary methodology includes a finite element analysis technique using the “DDuctileTCS” software developed at CIRCERB, shear tests on connections, bending tests of the composite beam and an extension of technical standards for the design of composite structures. This project will develop solutions to optimize the composite action and vibration of long-span precast and mixed floors. The methodology consists of: (i) analysis of systems and optimization of shapes by numerical finite element techniques; (ii) connection shear tests; (iii) proof of concept on a prototype beam in the laboratory.
Resource Link
Less detail