Skip header and navigation

10 records – page 1 of 1.

Serviceability of New Generation Wood Buildings: Case Study of Two Cross-Laminated Timber (CLT) Buildings

https://research.thinkwood.com/en/permalink/catalogue2644
Year of Publication
2013
Topic
Serviceability
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Author
Hu, Lin
Organization
FPInnovations
Year of Publication
2013
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Topic
Serviceability
Acoustics and Vibration
Keywords
Ambient Vibration Tests
Vibration Performance
Sound Insulation
Language
English
Research Status
Complete
Summary
FPInnovations launched the “Next Generation Building Systems” research program to support the expansion and diversification of wood into new markets. “Next Generation Wood Buildings” can be described as buildings that implement design and construction practices, and use innovative wood-based materials and systems beyond those defined and addressed in current building codes. As part of this program, the serviceability research focuses on addressing issues related to floor and building vibrations, sound transmission and creep. CLT is a next generation wood building material, which is a promising alternative to concrete slabs. To facilitate wood expansion into the market traditionally dominated by steel and concrete, several CLT buildings have been designed or built. Taking this opportunity, we conducted this study on two CLT buildings in the province of Quebec (i.e.,Desbiens and Chibougamau) to collect data that will form a database for the development of design provisions and installation guides for controlling vibrations and noise in CLT floors and buildings. The study also provides some information to designers and architects to strengthen their confidence in using CLT in their building projects. It is our hope that the collaboration through this study demonstrates to both designers and users of CLT buildings that if we work together, we can build good quality CLT buildings. During the construction, ambient vibration tests were conducted on the two CLT buildings to determine their natural frequencies (periods) and damping ratios. Vibration performance tests were conducted on selected CLT floors to determine their frequencies and static deflections. ASTM standard sound insulation tests were conducted on the selected CLT walls and floors in Chibougamau CLT building to develop the sound insulation solutions. After the two CLT buildings were completed, ASTM sound insulation tests were conducted in the selected units to determine the Field Sound Transmission Class (FSTC) of the finished floors and walls, and the Field Impact Insulation Class (FIIC) of the finished floors. We found that in general, the vibration performance of these two CLT buildings and their floor vibration performance are functional. The efforts made by the design engineers, the architects, and the contractors to make it happen are commendable, considering the lack of design provisions and guidelines in building codes for controlling vibrations in such innovative wood floor and buildings. The sound insulation of the selected units in Chibougamau building was very satisfactory. This confirmed that with proper design, construction, and installation of the sound insulation solutions studied in this report, CLT floors, walls and buildings can achieve very good sound insulation. Some specific recommendations for CLT building sound insulation: If flanking paths can be minimized, then it is expected that better sound insulation than what we measured on the CLT floors during the building construction will be achieved ; Increasing the stud spacing from 400mm to 600mm for the wood stud walls enhances the airborne sound insulation of the current wood stud-CLT wall assemblies tested in this study ; Decoupling ceiling from the structure frame and from the CLT floors is a significant factor for cost-effective sound insulation solutions ; Selection of solutions for FSTC and FIIC above fifty (50) for non-carpeted CLT floors will ensure the satisfaction of the majority of occupants ; Conducting subjective evaluation is useful to ensure occupants satisfaction ; For implementation of the sound insulation solutions for floating floors, it is necessary to consult wood flooring and ceramic tiles installation guides for floating the flooring.
Online Access
Free
Resource Link
Less detail

In-Situ Testing of the Wood Innovation and Design Centre for Serviceability Performance

https://research.thinkwood.com/en/permalink/catalogue1183
Year of Publication
2018
Topic
Serviceability
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Serviceability
Acoustics and Vibration
Keywords
Vibration Performance
Sound Insulation
Natural Frequencies
Damping Ratios
Ambient Vibration Testing
Apparent Sound Transmission Class
Apparent Impact Insulation Class
Language
English
Research Status
Complete
Summary
Three performance attributes of a building for serviceability performance are 1) vibration of the whole building structure, 2) vibration of the floor system, typically in regards to motions in a localized area within the entire floor plate, and 3) sound insulation performance of the wall and floor assemblies...
Online Access
Free
Resource Link
Less detail

In-Situ Testing at Wood Innovation and Design Centre: Floor Vibration, Building Vibration, and Sound Insulation Performance

https://research.thinkwood.com/en/permalink/catalogue284
Year of Publication
2015
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Author
Hu, Lin
Pirvu, Ciprian
Ramzi, Redouane
Organization
FPInnovations
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Topic
Acoustics and Vibration
Keywords
Natural Frequency
Damping Ratio
Static Deflection Testing
Vibration Performance
Sound Transmission
Language
English
Research Status
Complete
Summary
In order to address the lack of measured natural frequencies and damping ratios for wood and hybrid wood buildings, and lack of knowledge of vibration performance of innovative CLT floors and sound insulation performance of CLT walls and floors, FPInnovations conducted...
Online Access
Free
Resource Link
Less detail

Impact Sound Insulation in Wood Multi-Family Buildings

https://research.thinkwood.com/en/permalink/catalogue2623
Year of Publication
2012
Topic
Acoustics and Vibration
Design and Systems
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Hu, Lin
Organization
FPInnovations
Year of Publication
2012
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Design and Systems
Keywords
Mid-Rise
High-Rise
Sound Transmission
Language
English
Research Status
Complete
Summary
The number of occupant complaints received about annoying low-frequency footstep impact sound transmission through wood floor-ceiling assemblies has been increasing in proportion with the increase in the number of multi-family wood buildings built. Little work has been conducted to develop solutions to control the low-frequency footstep impact sound transmission. There are no code provisions or sound solutions in the codes. Current construction practices are based on a trial and error approach. This two-years project was conducted to remove this barrier and to successfully expand the use of wood in the multi-family and mid- to high-rise building markets. The key objective was to build a framework for the development of thorough solutions to control low-frequency footstep sound transmission through wood floor-ceiling assemblies. Field acoustic tests and case studies were conducted in collaboration with acoustics researchers, builders, developers, architects, design engineers and producers of wood building components. The field study found that: 1. With proper design of the base wood-joisted floors and sound details of the ceiling: With no topping on the floor, the floor-ceiling assembly did not provide sufficient impact sound insulation for low- to high-frequency sound components ; Use of a 13-mm thick wood composite topping along with the ceiling did not ensure satisfactory impact sound insulation; Even if there was the ceiling, use of a 38-mm thick concrete topping without a proper insulation layer to float the topping did not ensure satisfactory impact sound insulation ; A topping system having a mass over 20 kg/m2 and composed of composite panels and an insulation layer with proper thickness achieved satisfactory impact sound insulation. 2. The proper design of the base wood-joisted floors was achieved by the correct combination of floor mass and stiffness. The heaviest wood-joisted floors did not necessarily ensure satisfactory impact insulation. 3. Proper sound ceiling details were found to be achieved through: Use of two layers of gypsum board; Use of sound absorption materials filling at least 50% of the cavity ; Installation of resilient channels to the bottom of the joists through anchoring acoustic system resulted in improved impact sound insulation than directly attaching the resilient channels to the bottom of the joists. A four-task research plan was developed to thoroughly address the issue of poor low-frequency footstep impact insulation of current lightweight wood floor-ceiling assemblies and to correct prejudice against wood. The tasks include: 1) fundamental work to develop code provisions; 2) expansion of FPInnovations’ material testing laboratory to include tests to characterize the acoustic properties of materials; 3) development of control strategies; and 4) implementation. The laboratory acoustic research facility built includes a mock-up field floor-ceiling assembly with adjustable span and room height, a testing system and a building acoustic simulation software. The preliminary study on the effects of flooring, topping and underlayment on FIIC of the mock-up of the filed floor-ceiling assembly in FPInnovations’ acoustic chamber confirmed some findings from the field study. The laboratory study found that: A topping was necessary to ensure the satisfactory impact sound insulation; The topping should be floated on proper underlayment; Topping mass affects impact sound insulation of wood framed floors; A floating flooring enhanced the impact sound insulation of wood framed floors along with the floating topping. It is concluded that: 1. even if the studies only touched the tip of the iceberg of the footstep impact sound insulation of lightweight wood-joisted floor systems, the proposed solutions are promising but still need verification ; 2. with proper design of the base wood floor structure, the proper combination of flooring, and sound ceiling details along with proper installation, the lightweight wood floor-ceiling assembly can achieve satisfactory impact sound insulation ; 3. this study establishes a framework for thoroughly solving low-frequency footstep impact sound insulation problem in lightweight wood-joisted floor systems. Solutions will be developed in the next phase of this study as planned and the study will be conducted under NRCan Transformative Technology program with a project dedicated to “Serviceability of next generation wood building systems”.
Online Access
Free
Resource Link
Less detail

Sound Insulation Performance of Elevator Shaft Walls built with Nail-Laminated Timber Panels - Exploratory Tests and Preliminary Results

https://research.thinkwood.com/en/permalink/catalogue364
Year of Publication
2016
Topic
Acoustics and Vibration
Material
NLT (Nail-Laminated Timber)
Application
Shafts and Chases
Author
Pirvu, Ciprian
Organization
FPInnovations
Year of Publication
2016
Country of Publication
Canada
Format
Report
Material
NLT (Nail-Laminated Timber)
Application
Shafts and Chases
Topic
Acoustics and Vibration
Keywords
Building Codes
Canada
Sound Insulation
Apparent Sound Insulation Class
Language
English
Research Status
Complete
Summary
As 6-storey wood-frame, massive-timber and hybrid wood buildings are increasingly accepted by more jurisdictions across Canada, there is a need to develop reliable elevator shaft designs that meet the minimum structural, fire, and sound requirements in building...
Online Access
Free
Resource Link
Less detail

US Edition - Chapter 9: Sound Insulation of Cross-Laminated Timber Assemblies

https://research.thinkwood.com/en/permalink/catalogue828
Year of Publication
2013
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Ceilings
Author
Hu, Lin
Adams, David
Organization
FPInnovations
Binational Softwood Lumber Council
Year of Publication
2013
Country of Publication
Canada
United States
Format
Guide
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Ceilings
Topic
Acoustics and Vibration
Keywords
Sound Insulation
International Building Code
Language
English
Research Status
Complete
Series
CLT Handbook - US Edition
ISBN
978-0-86488-553-1
ISSN
1925-0495
Summary
The intent of this Chapter is to answer simple questions related to the definition of sound, its sources, quantification and methods of measurement, acceptable levels of sound, differences between sound and noise, etc. Of course, when verbalizing such questions, the solutions for sound control will be naturally unfolded to readers. This Chapter is intended to thoroughly separate myth from reality. The Chapter also introduces the International Building Code (IBC) requirements for sound insulation in buildings. State of the art construction details for CLT walls and floor/ceiling assemblies generally meeting IBC requirements are provided herein and are based on results of tests performed in various laboratories in the world and in the field by FPInnovations. A step by step construction practices guide then leads the reader towards the final goal, which is the occupants' satisfaction. We expect that after reading this Chapter, the reader will be in a position to acknowledge that CLT buildings can achieve satisfactory sound insulation levels if proper design and installation are followed. Note that, considering the short history of CLT construction, the journey is only beginning.
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: In-Situ Testing of the Origine 13-Storey Building for Vibration and Acoustic Performances

https://research.thinkwood.com/en/permalink/catalogue1474
Year of Publication
2018
Topic
Acoustics and Vibration
Serviceability
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Walls
Topic
Acoustics and Vibration
Serviceability
Keywords
Origine
Natural Frequencies
Damping Ratios
Sound Insulation
Ambient Vibration Tests
Static Deflection
Apparent Sound Transmission Class
Apparent Impact Insulation Class
Language
English
Research Status
Complete
Summary
Serviceability performance studied covers three different performance attributes of a building. These attributes are 1) vibration of the whole building structure, 2) vibration of the floor system, typically in regards to motions in a localized area within the entire floor plate, and 3) sound insulation performance of the wall and floor assemblies. Serviceability performance of a building is important as it affects the comfort of its occupants and the functionality of sensitive equipment as well. Many physical factors influence these performances. Designers use various parameters to account for them in their designs and different criteria to manage these performances. Lack of data, knowledge and experience of sound and vibration performance of tall wood buildings is one of the issues related to design and construction of tall wood buildings. In order to bridge the gaps in the data, knowledge, and experience of sound and vibration performance of tall wood buildings, FPInnovations conducted a three-phase performance testing on the Origine 13-storey CLT building of 40.9 m tall in Quebec city. It was the tallest wood building in Eastern Canada in 2017.
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: In-Situ Testing of the Brock Commons 18-Storey Building for Vibration and Acoustic performances

https://research.thinkwood.com/en/permalink/catalogue1180
Year of Publication
2018
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Acoustics and Vibration
Keywords
Non-Destructive Testing
Vibration Performance
Natural Frequencies
Damping Ratios
Sound Insulation
Ambient Vibration Testing
Apparent Sound Transmission Class
Language
English
Research Status
Complete
Summary
This report addresses serviceability issues of tall wood buildings focusing on their vibration and sound insulation performance. The sound insulation and vibration performance may not affect the building’s safety, but affects the occupants’ comfort and the proper operation of the buildings and the function of sensitive equipment...
Online Access
Free
Resource Link
Less detail

Taller and Larger Wood Buildings: Potential Impacts of Wetting on Performance of Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue372
Year of Publication
2016
Topic
Serviceability
Moisture
Application
Wood Building Systems
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2016
Country of Publication
Canada
Format
Report
Application
Wood Building Systems
Topic
Serviceability
Moisture
Keywords
Wetting
Drying
Wood-Moisture Relationship
Language
English
Research Status
Complete
Summary
This report summarizes basic wood-moisture relationships, and reviews conditions conducive to adverse consequences of wetting, such as staining, mold growth, decay, strength reduction, and dimensional change and distortion. It also outlines solutions and available resources related to on-site moisture management and design measures.
Online Access
Free
Resource Link
Less detail

US Edition - Chapter 7: Vibration Performance of Cross-Laminated Timber Floors

https://research.thinkwood.com/en/permalink/catalogue826
Year of Publication
2013
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Hu, Lin
Chui, Ying Hei
Organization
FPInnovations
Binational Softwood Lumber Council
Year of Publication
2013
Country of Publication
Canada
United States
Format
Guide
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Deflection
Vibration Controlled Spans
Language
English
Research Status
Complete
Series
CLT Handbook - US Edition
ISBN
978-0-86488-553-1
ISSN
1925-0495
Summary
Cross-laminated timber (CLT) is proving to be a promising solution for wood to compete in building sectors where steel and concrete have traditionally predominated. Studies at FPInnovations found that bare CLT floor systems differ from traditional lightweight wood joisted floors with typical mass around 4 lb./ft2 (20 kg/m2) and fundamental natural frequency above 15 Hz, and heavy concrete slab floors with a mass above 40 lb./ft2 (200 kg/m2) and fundamental natural frequency below 8 Hz. Based on FPInnovations' test results, bare CLT floors were found to have mass varying from approximately 6 lb./ft2 (30 kg/m2) to 30 lb./ft2 (150 kg/m2), and a fundamental natural frequency above 9 Hz. Due to these special properties, the existing standard vibration controlled design methods for lightweight and heavy floors may not be applicable for CLT floors. ...
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.