Skip header and navigation

10 records – page 1 of 1.

Seismic Analysis of Cross Laminated Timber Buildings Using Code Prescribed Methods

https://research.thinkwood.com/en/permalink/catalogue1646
Year of Publication
2016
Topic
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Sustersic, Iztok
Fragiacomo, Massimo
Dujic, Bruno
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Connections
Keywords
FE Analysis
Multi-Story
Geometry
Vertical Load
Friction
Strength
Stiffness
Ductility
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3453-3461
Summary
This paper investigates the seismic analysis of multi-story cross laminated timber (XLAM) buildings. The influence of different parameters such as wall geometry, vertical load level, friction and, most importantly, connection stiffness, strength and ductility is assessed. Linear and nonlinear finite element (FE) analyses are carried out on a hypothetic four-story case study building. The XLAM building behaviour factors are derived for different cases using a simplified method. Values in the range of 2 to 3 have been obtained depending on whether monolithic or segmental walls are used. Further nonlinear dynamic analyses carried out on a part of the case study building show that friction may have a beneficial effect on the seismic resistance of XLAM buildings. However it is advised that its influence is conservatively neglected until further investigations are performed. Obtained results provide an important insight for both academics and practicing engineers into the FE modelling and design of XLAM buildings using different code-based approaches. This data is also crucial for the preparation of new seismic design codes on XLAM timber buildings.
Online Access
Free
Resource Link
Less detail

Seismic Analysis of Cross-Laminated Multistory Timber Buildings Using Code-Prescribed Methods: Influence of Panel Size, Connection Ductility, and Schematization

https://research.thinkwood.com/en/permalink/catalogue566
Year of Publication
2015
Topic
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Sustersic, Iztok
Fragiacomo, Massimo
Dujic, Bruno
Publisher
American Society of Civil Engineers
Year of Publication
2015
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Connections
Keywords
Multi-Story
FE Analysis
Geometry
Vertical Load
Friction
Stiffness
Strength
Ductility
Language
English
Research Status
Complete
Series
Journal of Structural Engineering
Summary
This paper presents the results of an experimental study whose objective was to investigate the behavior of a hybrid wood shear-wall system defined herein as a combination of traditional light-frame wood shear walls with post-tensioned rocking Cross-Laminated Timber (CLT) panels. The post-tensioned CLT panels in the hybrid system offer both vertical and lateral load resistance and self-centering capacities. The traditional Light-Frame Wood Systems (LiFS) provide additional lateral load resistance along with a large amount of energy dissipation through the friction of nail connections. Thus, a combination of these two types of structures, in which traditional light-frame wood shearwalls are utilized as structural partition walls, may provide an excellent structural solution for mid-rise to tall wood buildings for apartments/condos, where there is a need for resisting large lateral and vertical loads as well as structural stability. In this study, a real-time hybrid testing algorithm using a combination of time-delay updating and Newmark-Beta feed forward to reduce the undesirable effects of time delay was introduced. The top two-stories of a three-story building were modeled as a numerical substructure with the first story as the experimental CLT-LiFS substructure. The experimental results of the hybrid wall are presented and discussed in this paper.
Online Access
Free
Resource Link
Less detail

Numerical Modelling Analysis of Angle Bracket Connections Used in Cross Laminated Timber Constructions

https://research.thinkwood.com/en/permalink/catalogue2445
Year of Publication
2019
Topic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Floors
Author
Rezvani, Saeed
Zhou, Lina
Year of Publication
2019
Country of Publication
Canada
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Floors
Topic
Connections
Keywords
Finite Element
Abaqus
Three Dimensional Analysis
Angle Bracket
Panels
Load
Language
English
Research Status
Complete
Series
Modular and Offsite Construction (MOC) Summit Proceedings
Online Access
Free
Resource Link
Less detail

Examination of the Lateral Resistance of Cross-Laminated Timber in Panel-Panel Connections

https://research.thinkwood.com/en/permalink/catalogue2302
Year of Publication
2015
Topic
Design and Systems
Connections
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Author
Richardson, Benjamin Lee
Publisher
Virginia Tech
Year of Publication
2015
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Topic
Design and Systems
Connections
Keywords
Lateral Resistance
Shear Resistance
Full Scale
Panels
Small Scale
Steel Connections
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Static and Dynamic Behavior of Stiffening Shear Walls in Dowel-Laminated Timber Construction

https://research.thinkwood.com/en/permalink/catalogue932
Year of Publication
2016
Topic
Seismic
Connections
Material
DLT (Dowel Laminated Timber)
Application
Shear Walls
Wood Building Systems
Author
Sandhaas, Carmen
Blaß, Hans Joachim
Organization
Karlsruher Institut für Technologie
Year of Publication
2016
Country of Publication
Germany
Format
Report
Material
DLT (Dowel Laminated Timber)
Application
Shear Walls
Wood Building Systems
Topic
Seismic
Connections
Keywords
Joints
Cyclic Tests
Q Factor
Dynamic Building Model
Language
German
Research Status
Complete
Summary
Joints and shear walls of buildings made from dowel-laminated timber were experimentally investigated and assessed. Based on cyclic tests on shear walls, a nonlinear dynamic building model was developed. The developed model served to evaluate the seismic behaviour of buildings made from dowel-laminated timber and to derive a preliminary behaviour factor q required for seismic design of this building typology.
Online Access
Free
Resource Link
Less detail

In-Plane Strength and Stiffness of Cross-Laminated Timber Shear Walls

https://research.thinkwood.com/en/permalink/catalogue2117
Year of Publication
2018
Topic
Design and Systems
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Floors

WoodST: An Advanced Modelling Tool for Fire Safety Analysis of Timber Structures

https://research.thinkwood.com/en/permalink/catalogue2827
Year of Publication
2021
Topic
Connections
Design and Systems
Fire
Seismic
Wind
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Chen, Zhiyong
Dagenais, Christian
Ni, Chun
Organization
FPInnovations
Year of Publication
2021
Country of Publication
Canada
Format
Report
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Connections
Design and Systems
Fire
Seismic
Wind
Keywords
Model
Heat Transfer
Charring Rate
Load-displacement Curve
Failure
Fire Safety
Language
English
Research Status
Complete
Series
InfoNote
Summary
An advanced modelling tool, WoodST, has been developed for fire safety analysis of timber structures. It is demonstrated that this advanced modelling tool can predict the structural response of LVL beams, glulam bolted connections, OSB-web I-joist and wood-frame floors under forces and fire conditions with an accuracy acceptable to design practitioners (i.e., within 10% of test data). The developed modelling tool can: Fill the gap in terms of suitable models for timber connections, which is an impediment for the design and construction of tall wood buildings; Provide a cost-effective simulation solution compared to costly experimental solutions; and Significantly reduce the cost and shorten the time for the development and/or optimization of new wood-based products and connections.
Online Access
Free
Resource Link
Less detail

Lateral Load Capacity in a Solid Structure Assembled with Glued-in Rods

https://research.thinkwood.com/en/permalink/catalogue2251
Topic
Connections
Application
Wood Building Systems
Organization
Université du Québec à Chicoutimi
Country of Publication
Canada
Application
Wood Building Systems
Topic
Connections
Keywords
Glued-In Rods
Lateral Load
Lateral Load Resisting System
Research Status
In Progress
Notes
Project contact is Sylvain Ménard at Université du Québec à Chicoutimi
Summary
Assemblies with glued-in rods allow architectural freedom. They are in fact invisible since they are found in the mass of the structural element. Some work has begun to document this type of assembly by considering static tests in single-sided traction and single-sided creep tests (Verdet, 2016). In order to continue this effort to specify the limits of this type of assembly, it is proposed to consider the lateral forces for assemblies with single and multiple rod connections. This project will therefore aim to document the ability of these assemblies to carry lateral loads.
Less detail

Dynamic Behavior of High-Rise Wood Buildings under Wind Loads

https://research.thinkwood.com/en/permalink/catalogue2190
Topic
Wind
Connections
Design and Systems
Application
Wood Building Systems
Organization
Université Laval
Country of Publication
Canada
Application
Wood Building Systems
Topic
Wind
Connections
Design and Systems
Keywords
National Building Code of Canada
Load Resistance
High-Rise
Tall Wood
Dynamic Behaviour
Language
English
Research Status
In Progress
Notes
Project contact is Christian Dagenais at Université Laval
Summary
The National Building Code of Canada (NBCC, NRC 2015) proposes equations to limit acceleration at the top of a tall building. These equations were developed and validated on several buildings designed between 1975 and 2000. The buildings built during these years are made of concrete or steel. It is therefore not certain that the NBCC equations can be applied for tall wooden buildings; wood being a lighter material than concrete and steel. In this project, the PhD candidate will study the impact of lateral load resistance systems and fastening systems used in timber framing on natural frequency and damping as well as its response due to wind loads. The influence of non-structural elements will also be studied. Two high-rise wooden buildings (Origine, 13 floors in Quebec City and Arbora, 8 floors in Montreal) are currently being instrumented to obtain information on the dynamic behavior of the structure. The measurements taken on these two buildings will be used, among other things, to validate theoretical models developed in the context of the doctorate.
Less detail

Performance of Two-Storey CLT House Subjected to Lateral Loads

https://research.thinkwood.com/en/permalink/catalogue376
Year of Publication
2014
Topic
Connections
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Popovski, Marjan
Gavric, Igor
Schneider, Johannes
Organization
FPInnovations
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Design and Systems
Keywords
Lateral Loads
North America
Building Codes
Full Scale
Quasi-Static
Monotonic Loading
Cyclic Loading
Failure Mechanism
Language
English
Research Status
Complete
Summary
The work presented in this report is a continuation of the FPInnovations' research project on determining the performance of the CLT as a structural system under lateral loads. A two storey full-scale model of a CLT house was tested under quasi-static monotonic and cyclic lateral loading in two directions, one direction at a time. In total five tests were performed; one push-over and two cyclic tests were conducted in the longer symmetrical direction (E-W), and two cyclic tests were performed in the shorter asymmetrical direction (N-S). In addition, before and after each test, natural frequencies of the house in both directions were measured. The main objective of the tests was to investigate 3-D system behaviour of the CLT structure subjected to lateral loads. The CLT structure subjected to lateral loads performed according to the design objectives.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.