Skip header and navigation

2 records – page 1 of 1.

Development of a Heavy Timber Moment-Resisting Frame with Ductile Steel Links

https://research.thinkwood.com/en/permalink/catalogue1657
Year of Publication
2016
Topic
Connections
Mechanical Properties
Seismic
Material
Solid-sawn Heavy Timber
Application
Frames
Author
Gohlich, Ryan
Erochko, Jeffrey
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Solid-sawn Heavy Timber
Application
Frames
Topic
Connections
Mechanical Properties
Seismic
Keywords
Mid-Rise
Self-Tapping Screws
Moment-Resisting
Strength
Stiffness
Ductility
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3571-3580
Abstract
To improve the seismic performance of mid-rise heavy timber moment-resisting frames, a hybrid timber-steel moment-resisting connection was developed that incorporates specially detailed replaceable steel yielding link elements fastened to timber beams and columns using self-tapping screws (STS). Performance of the connection was...
Online Access
Free
Resource Link
Less detail

Adaptation of Advanced High R-Factor Bracing Systems into Heavy Timber Frames

https://research.thinkwood.com/en/permalink/catalogue1760
Year of Publication
2016
Topic
Seismic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Author
Gilbert, Colin
Erochko, Jeffrey
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Topic
Seismic
Design and Systems
Mechanical Properties
Keywords
Quasi-Static
Cyclic Testing
Ductility
Damping Devices
R-factors
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5068-5077
Abstract
Timber provides attractive earthquake performance characteristics for regions of high seismic risk, particularly its high strength-to-weight ratio; however, current timber structural systems are associated with relatively low design force reduction factors due to their low inherent ductility when compared to high-performance concrete and steel...
Online Access
Free
Resource Link
Less detail