Skip header and navigation

2 records – page 1 of 1.

Cross Laminated Timber – Properties and Use for Building Purposes: A Review from the Experience of Swiss Researchers

https://research.thinkwood.com/en/permalink/catalogue23
Year of Publication
2013
Topic
Mechanical Properties
General Information
Material
CLT (Cross-Laminated Timber)
Author
Niemz, Peter
Sonderegger, Walter
Publisher
Transilvania University Press Brasov
Year of Publication
2013
Country of Publication
Romania
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
General Information
Keywords
Physical Properties
MOE
Bending Strength
Building Applications
Language
English
Romanian
Research Status
Complete
Series
Pro Ligno
ISSN
2069-7430
Summary
An overview on the mechanical and physical properties of cross laminated timber (solid wood panels) in the building industry and its use in timber construction is presented. Structure-property relations for solid wood based materials are discussed. Important properties, such as strength, sorption, diffusion, thermal conductivity in relation to the board structure are presented. By varying the structure, the properties can be optimized over a wide range. The focus of this publication lies on experimental works performed by Swiss researchers at the ETH Zürich.
Online Access
Free
Resource Link
Less detail

Mechanical Behaviour of Finger Joints at Elevated Temperatures

https://research.thinkwood.com/en/permalink/catalogue612
Year of Publication
2012
Topic
Fire
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Frangi, Andrea
Bertocchi, Marco
Clauß, Sebastian
Niemz, Peter
Publisher
Springer-Verlag
Year of Publication
2012
Country of Publication
Germany
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Topic
Fire
Mechanical Properties
Keywords
Fire Resistance
Tensile tests
Bending Tests
Finger Joints
Language
English
Research Status
Complete
Series
Wood Science and Technology
ISSN
1432-5225
Summary
Finger joints are commonly used to produce engineered wood products like glued laminated timber beams. Although comprehensive research has been conducted on the structural behaviour of finger joints at ambient temperature, there is very little information about the structural behaviour at elevated temperature. A comprehensive research project on the fire resistance of bonded timber elements is currently ongoing at the ETH Zurich. The aim of the research project is the development of simplified design models for the fire resistance of bonded structural timber elements taking into account the behaviour of the adhesive used at elevated temperature. The paper presents the results of a first series of tensile and bending tests on specimens with finger joints pre-heated in an oven. The tests were carried out with different adhesives that fulfil current approval criteria for the use in loadbearing timber components. The results showed substantial differences in temperature dependant strength reduction and failure between the different adhesives tested. Thus, the structural behaviour of finger joints at elevated temperature is strongly influenced by the behaviour of the adhesive used for bonding and may govern the fire design of engineered wood products like glued laminated timber beams.
Online Access
Free
Resource Link
Less detail