Skip header and navigation

25 records – page 1 of 3.

Experimental Investigation on the Shear Resistance of Existing Glulam Structures

https://research.thinkwood.com/en/permalink/catalogue2439
Year of Publication
2019
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Schulte-Wrede, Michael
Merk, Michael
Dietsch, Philipp
Year of Publication
2019
Country of Publication
Portugal
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Shear Resistance
Bending Tests
Aging Processes
Drill Cores
Language
English
Conference
International Conference on Structural Health Assessment of Timber Structures
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Hybrid CLT-Based Modular Construction Systems for Prefabricated Buildings

https://research.thinkwood.com/en/permalink/catalogue1901
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Wood Building Systems
Floors
Walls

Assessing the Seismic Performance of Screws Used in Timber Structures by Means of Cyclic Bending Tests

https://research.thinkwood.com/en/permalink/catalogue1946
Year of Publication
2018
Topic
Connections
Seismic
Application
Walls
Floors

Effect of Holes on the Structural Capacities of Laminated Veneer Lumber

https://research.thinkwood.com/en/permalink/catalogue2045
Year of Publication
2018
Topic
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)

Glued Laminated Timber Beams Reinforced With Sisal Fibres

https://research.thinkwood.com/en/permalink/catalogue2436
Year of Publication
2018
Topic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams

Innovative Composite Steel-Timber Floors with Prefabricated Modular Components

https://research.thinkwood.com/en/permalink/catalogue1350
Year of Publication
2017
Topic
Connections
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Floors
Author
Loss, Cristiano
Davison, Buick
Publisher
ScienceDirect
Year of Publication
2017
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Floors
Topic
Connections
Design and Systems
Mechanical Properties
Keywords
Prefabricated
Multi-Storey
Residential
Bearing Capacity
Stiffness
Construction
Mechanical Connectors
Epoxy
Modular
Bending Tests
Finite Element Model
Language
English
Research Status
Complete
Series
Engineering Structures
Summary
An innovative steel-timber composite floor for use in multi-storey residential buildings is presented. The research demonstrates the potential of these steel-timber composite systems in terms of bearing capacity, stiffness and method of construction. Such engineered solutions should prove to be sustainable since they combine recyclable materials in the most effective way. The floors consist of prefabricated ultralight modular components, with a Cross-Laminated Timber (CLT) slab, joined together and to the main structural system using only bolts and screws. Two novel floor solutions are presented, along with the results of experimental tests on the flexural behaviour of their modular components. Bending tests have been performed considering two different methods of loading and constraints. Each prefabricated modular component uses a special arrangement of steel-timber connections to join a CLT panel to two customized cold-formed steel beams. Specifically, the first proposed composite system is assembled using mechanical connectors whereas the second involves the use of epoxy-based resin. In the paper, a FEM model is provided in order to extend this study to other steel-timber composite floor solutions. In addition, the paper contains the design model to be used in dimensioning the developed systems according to the state of the art of composite structures.
Online Access
Free
Resource Link
Less detail

Bonding Strength Test Method Assessment for Cross-Laminated Timber Derived Stressed-Skin Panels (CLT SSP)

https://research.thinkwood.com/en/permalink/catalogue1404
Year of Publication
2017
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Luengo, Emilio
Hermoso, Eva
Cabrero, Juan Carlos
Arriaga, Francisco
Publisher
Springer Netherlands
Year of Publication
2017
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Stressed-Skin Panels
Shear Strength
Glue Lines
Shear Tests
Bending Tests
Bonding
Language
English
Research Status
Complete
Series
Materials and Structures
ISSN
1871-6873
Summary
Different methods, including bending tests and small and medium size shear tests, were used to assess the skin to stringer glue line shear strength of Radiata Pine Cross-Laminated Timber Derived Stressed-Skin Panels (CLT SSP). Bending test shear strengths were estimated using the mechanically jointed beam theory (gamma method) for CrossLaminated Timber (CLT) panels with modifications in the layers’ effective widths, and then compared with results from the small and medium size shear tests. Small and medium size shear tests proved to be possible methods for assessing bonding strength for factory production control. The small shear tests provided lower strength values and higher scatter results than those gathered from the medium size tests. The mean shear strength results obtained from bending tests were inferior to the values obtained from the small and medium size specimens. The bending tests proved necessary for assessing the mechanical behaviour of CLT SSP.
Online Access
Free
Resource Link
Less detail

Hybrid Wood-Based Structural System for Multi-Storey Buildings

https://research.thinkwood.com/en/permalink/catalogue1894
Year of Publication
2016
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Floors
Frames
Author
Loss, Cristiano
Piazza, Maurizio
Zandonini, Riccardo
Year of Publication
2016
Country of Publication
Portugal
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Floors
Frames
Topic
Design and Systems
Keywords
Panels
Prefabricated
Shear Tests
Connections
Bending Tests
Language
English
Conference
International Conference on Structures and Architecture
Research Status
Complete
Notes
July 27-29, Guimaraes, Portugal
Online Access
Free
Resource Link
Less detail

Computer-Aided Methods for the Pragmatic Assessment of the Bearing Resistance of Glued Laminated Timber: Summary of Exemplary Simulation Studies

https://research.thinkwood.com/en/permalink/catalogue1147
Year of Publication
2016
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Frese, Matthias
Organization
Karlsruher Institut für Technologie
Publisher
KIT Scientific Publishing
Year of Publication
2016
Country of Publication
Germany
Format
Report
Material
Glulam (Glue-Laminated Timber)
Topic
Mechanical Properties
Keywords
Bending Tests
Tension Tests
Compression Tests
Computer Simulations
Language
German
Research Status
Complete
ISBN
978-3-7315-0493-1
Summary
This book contains experiences and results of computer simulations in the field of research on glued laminated timber. Literature and references to the corresponding methodical approach are given to facilitate the access to the elementary basics. It also contains constructive explanations and critical annotations on modelling glued laminated timber for bending, tension and compression tests. Finally, the relevance of the simulation results for practical issues is discussed.
Online Access
Free
Resource Link
Less detail

Timber-Concrete Composite Connectors in Flat-Plate Engineered Wood Products

https://research.thinkwood.com/en/permalink/catalogue1275
Year of Publication
2016
Topic
Acoustics and Vibration
Mechanical Properties
Connections
Material
Timber-Concrete Composite
Application
Floors
Author
Gerber, Adam
Organization
University of British Columbia
Year of Publication
2016
Country of Publication
Canada
Format
Thesis
Material
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Mechanical Properties
Connections
Keywords
Strength
Stiffness
Shear Tests
Bending Tests
Vibration Tests
Dynamic Properties
Finite Element Model
Language
English
Research Status
Complete
Summary
Timber-Concrete Composite (TCC) systems are comprised of a timber element connected to a concrete slab through a mechanical shear connection. When TCC are used as flexural elements, the concrete and timber are located in compression and tension zones, respectively. A large number of precedents for T-beam configurations exist; however, the growing availability of flat plate engineered wood products (EWPs) in North America in combination with a concrete topping has offered designers and engineers greater versatility in terms of architectural expression and structural and building physics performance. The focus of this investigation was to experimentally determine the properties for a range of proprietary, open source, and novel TCC systems in several Canadian EWPs. Strength and stiffness properties were determined for 45 different TCC configurations based on over 300 small-scale shear tests. Nine connector configurations were selected for implementation in full-scale bending and vibration tests. Eighteen floor panels were tested for elastic stiffness under a quasi-static loading protocol and measurements of the dynamic properties were obtained prior to loading to failure. The tests confirmed that both hand calculations according to the -method and more detailed FEM models can predict the basic stiffness and dynamic properties of TCC floors within a reasonable degree of accuracy; floor capacities were more difficult to predict, however, failure did usually not occur until loading reached 10 times serviceability requirements. The research demonstrated that all selected connector configurations produced efficient timber-concrete-composite systems.
Online Access
Free
Resource Link
Less detail

25 records – page 1 of 3.