Skip header and navigation

Refine Results By

639 records – page 1 of 64.

Joint Professional Practice Guidelines: Encapsulated Mass Timber Construction up to 12 Storeys

https://research.thinkwood.com/en/permalink/catalogue2772
Edition
Version 1.0 March 30, 2021
Year of Publication
2021
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
PSL (Parallel Strand Lumber)
LSL (Laminated Strand Lumber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Organization
Architectural Institute of British Columbia (AIBC)
Engineers and Geoscientists British Columbia
Edition
Version 1.0 March 30, 2021
Year of Publication
2021
Country of Publication
Canada
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
PSL (Parallel Strand Lumber)
LSL (Laminated Strand Lumber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Acoustics
Structural
Design
Building Enclosure
Architecture
Quality Assurance
Building Code
Encapsulated Mass Timber Construction
Engineering
Fire Protection
Language
English
Research Status
Complete
Summary
These Joint Professional Practice Guidelines – Encapsulated Mass Timber Construction Up to 12 Storeys were jointly prepared by the Architectural Institute of British Columbia (AIBC) and Engineers and Geoscientists British Columbia. The AIBC and Engineers and Geoscientists BC regulate and govern the professions of architecture, engineering, and geoscience under the Architects Act and the Professional Governance Act. The AIBC and Engineers and Geoscientists BC each have a regulatory mandate to protect the public interest, which is met in part by setting and maintaining appropriate academic, experience, and professional practice standards. Engineering Professionals are required per Section 7.3.1 of the Bylaws - Professional Governance Act to have regard for applicable standards, policies, plans, and practices established by the government or by Engineers and Geoscientists BC, including professional practice guidelines. For Engineering Professionals, these professional practice guidelines clarify the expectations for professional practice, conduct, and competence when providing engineering services for EMTC buildings. For Architects, these guidelines provide important information and identify issues to be considered when providing architectural services for EMTC buildings. These guidelines deal with the performance of specific activities in a manner such that Architects and Engineering Professionals can meet their professional obligations under the Architects Act and the Professional Governance Act. These guidelines were developed in response to new classifications of building size and construction relative to occupancy introduced in the 2018 British Columbia Building Code (BCBC), under Division B, Article 3.2.2.48EMTC. Group C, up to 12 storeys, Sprinklered, and Article 3.2.2.57EMTC. Group D, up to 12 storeys, Sprinklered. These new classifications were introduced in Revision 2 of the 2018 BCBC on December 12, 2019 and in Amendment 12715 of the 2019 Vancouver Building By-law (VBBL) on July 1, 2020. Additionally, provisions related to Encapsulated Mass Timber Construction (EMTC) were introduced in Revision 1 of the 2018 British Columbia Fire Code (BCFC) on December 12, 2019. These guidelines were first published in 2021 to provide guidance on architectural and engineering considerations relating to these significant changes to the 2018 BCBC, the 2019 VBBL, and the 2018 BCFC. For Engineering Professionals, these guidelines are intended to clarify the expectations of professional practice, conduct, and competence when Engineering Professionals are engaged on an EMTC building. For Architects, these guidelines inform and support relevant competency standards of practice to be met when Architects are engaged on an EMTC building. As with all building and construction types, the EMTC-specific code provisions prescribe minimum requirements that must be met. The majority of EMTC of 7 to 12 storeys are considered High Buildings, and as such are subject to the BCBC, Subsection 3.2.6. Additional Requirements for High Buildings.
Online Access
Free
Resource Link
Less detail

Climate Effects of Forestry and Substitution of Concrete Buildings and Fossil Energy

https://research.thinkwood.com/en/permalink/catalogue2774
Year of Publication
2021
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Gustavsson, L.
Nguyen, T.
Sathre, Roger
Tettey, U.Y.A.
Publisher
Elsevier
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Climate Change
Modular Construction
Carbon Emissions
Forest Management
Language
English
Research Status
Complete
Series
Renewable and Sustainable Energy Reviews
Summary
Forests can help mitigate climate change in different ways, such as by storing carbon in forest ecosystems, and by producing a renewable supply of material and energy products. We analyse the climate implications of different scenarios for forestry, bioenergy and wood construction. We consider three main forestry scenarios for Kronoberg County in Sweden, over a 201-year period. The Business-as-usual scenario mirrors today's forestry while in the Production scenario the forest productivity is increased by 40% through more intensive forestry. In the Set-aside scenario 50% of forest land is set-aside for conservation. The Production scenario results in less net carbon dioxide emissions and cumulative radiative forcing compared to the other scenarios, after an initial period of 30–35 years during which the Set-aside scenario has less emissions. In the end of the analysed period, the Production scenario yields strong emission reductions, about ten times greater than the initial reduction in the Set-aside scenario. Also, the Set-aside scenario has higher emissions than Business-as-usual after about 80 years. Increasing the harvest level of slash and stumps results in climate benefits, due to replacement of more fossil fuel. Greatest emission reduction is achieved when biomass replaces coal, and when modular timber buildings are used. In the long run, active forestry with high harvest and efficient utilisation of biomass for replacement of carbon-intensive non-wood products and fuels provides significant climate mitigation, in contrast to setting aside forest land to store more carbon in the forest and reduce the harvest of biomass.
Online Access
Free
Resource Link
Less detail

Mass Timber Design Manual

https://research.thinkwood.com/en/permalink/catalogue2780
Year of Publication
2021
Topic
Acoustics and Vibration
Connections
Cost
Design and Systems
Energy Performance
Environmental Impact
Fire
General Information
Moisture
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Organization
WoodWorks
Think Wood
Year of Publication
2021
Country of Publication
United States
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Connections
Cost
Design and Systems
Energy Performance
Environmental Impact
Fire
General Information
Moisture
Keywords
Mass Timber
United States
Building Systems
Tall Wood
Sustainability
IBC
Applications
Language
English
Research Status
Complete
Summary
This manual is helpful for experts and novices alike. Whether you’re new to mass timber or an early adopter you’ll benefit from its comprehensive summary of the most up to date resources on topics from mass timber products and applications to tall wood construction and sustainability. The manual’s content includes WoodWorks technical papers, Think Wood continuing education articles, case studies, expert Q&As, technical guides and other helpful tools. Click through to view each individual resource or download the master resource folder for all files in one handy location. For your convenience, this book will be updated annually as mass timber product development and the market are quickly evolving.
Online Access
Free
Resource Link
Less detail

Construction Cost Analysis of High-performance Multi-unit Residential Buidlings in British Columbia

https://research.thinkwood.com/en/permalink/catalogue2792
Year of Publication
2021
Topic
Cost
Energy Performance
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Organization
Zero Emissions Building Exchange
Year of Publication
2021
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Cost
Energy Performance
Keywords
BC Energy Step Code
Net Zero Energy Ready
Mid-Rise
Passive House
Construction Cost
Language
English
Research Status
Complete
Summary
Does it really cost more to build a high-performance building? Historically, this question has been addressed with theoretical studies based on varying the design of common building archetypes, but nothing beats the real thing. ZEBx, in partnership with BTY Group and seven builders from across BC, has completed a cost analysis of seven high-performance, wood-framed, mid-rise, multi-unit residential buildings that meet Step 4 of the Energy Step Code or the Passive House standard. The results of the study may surprise you!
Online Access
Free
Resource Link
Less detail

Mass Timber Building Science Primer

https://research.thinkwood.com/en/permalink/catalogue2797
Year of Publication
2021
Topic
Design and Systems
Moisture
Fire
Acoustics and Vibration
General Information
Connections
Market and Adoption
Serviceability
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Author
Kesik, Ted
Martin, Rosemary
Organization
Mass Timber Institute
RDH Building Science
Publisher
Mass Timber Institute
Year of Publication
2021
Country of Publication
Canada
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Moisture
Fire
Acoustics and Vibration
General Information
Connections
Market and Adoption
Serviceability
Keywords
Mass Timber
Building Science
Language
English
Research Status
Complete
Summary
The development of this primer commenced shortly after the 2018 launch of the Mass Timber Institute (MTI) centered at the University of Toronto. Funding for this publication was generously provided by the Ontario Ministry of Natural Resources and Forestry. Although numerous jurisdictions have established design guides for tall mass timber buildings, architects and engineers often do not have access to the specialized building science knowledge required to deliver well performing mass timber buildings. MTI worked collaboratively with industry, design professionals, academia, researchers and code experts to develop the scope and content of this mass timber building science primer. Although provincially funded, the broader Canadian context underlying this publication was viewed as the most appropriate means of advancing Ontario’s nascent mass timber building industry. This publication also extends beyond Canada and is based on universally applicable principles of building science and how these principles may be used anywhere in all aspects of mass timber building technology. Specifically, these guidelines were developed to guide stakeholders in selecting and implementing appropriate building science practices and protocols to ensure the acceptable life cycle performance of mass timber buildings. It is essential that each representative stakeholder, developer/owner, architect/engineer, supplier, constructor, wood erector, building official, insurer, and facility manager, understand these principles and how to apply them during the design, procurement, construction and in-service phases before embarking on a mass timber building project. When mass timber building technology has enjoyed the same degree of penetration as steel and concrete, this primer will be long outdated and its constituent concepts will have been baked into the training and education of design professionals and all those who fabricate, construct, maintain and manage mass timber buildings. One of the most important reasons this publication was developed was to identify gaps in building science knowledge related to mass timber buildings and hopefully to address these gaps with appropriate research, development and demonstration programs. The mass timber building industry in Canada is still a collection of seedlings that continue to grow and as such they deserve the stewardship of the best available building science knowledge to sustain them until such time as they become a forest that can fend for itself.
Online Access
Free
Resource Link
Less detail

Circular Economy & the Built Environment Sector in Canada

https://research.thinkwood.com/en/permalink/catalogue2805
Year of Publication
2021
Topic
Environmental Impact
Design and Systems
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Other Materials
Application
Wood Building Systems
Hybrid Building Systems
Organization
Delphi Group
SCIUS Advisory
Year of Publication
2021
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Other Materials
Application
Wood Building Systems
Hybrid Building Systems
Topic
Environmental Impact
Design and Systems
Keywords
Circular Economy
Greenhouse gas emissions
Waste
Demolition
Design for Disassembly and Adaptibility
Design for Durability
Deconstruction
Material Recovery
Reverse Logistics
Language
English
Research Status
Complete
Summary
This study on Circular Economy & the Built Environment Sector in Canada was carried out by The Delphi Group in collaboration with Scius Advisory and completed in March 2021 on behalf of Forestry Innovation Investment Ltd. (FII) in British Columbia and Natural Resources Canada (NRCan) as the co-sponsors for the research. The work identifies a broad range of current efforts across Canada and undertakes a deeper dive on design for disassembly and adaptability (DfD/A) best practices, including an analysis of the ISO Standard 20887:2020 (i.e., design for disassembly and adaptability) in line with current Canadian industry practice and market readiness.
Online Access
Free
Resource Link
Less detail

Transferability of 2021 International Building Code Tall Wood Building Provisions to the National Building Code of Canada

https://research.thinkwood.com/en/permalink/catalogue2806
Year of Publication
2021
Topic
Fire
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Other Materials
Application
Hybrid Building Systems
Wood Building Systems
Organization
GHL Consultants Ltd.
Fast + Epp
Year of Publication
2021
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Other Materials
Application
Hybrid Building Systems
Wood Building Systems
Topic
Fire
Design and Systems
Seismic
Keywords
National Building Code of Canada
International Building Code
Building Code
Encapsulated Mass Timber Construction
Encapsulation
Exposed Mass Timber Elements
Building Height
Building Area
Fire Resistance Rating
Language
English
Research Status
Complete
Summary
The acceptable solutions in Division B of the anticipated 2020 NBCC limit the height of Groups C and D buildings of sprinklered encapsulated mass timber construction (EMTC) to 12 storeys in building height, and a measured building height of 42m. The recently published 2021 IBC contains provisions to permit buildings of mass timber construction under the IBC Type IV construction, surpassing the NBCC provisions by maximum building height, building area, occupancy groups, and interior exposed timber. The IBC mass timber buildings are permitted to have a building height of maximum 18 storeys, depending on the occupancy group. Within Type IV construction, four subdivisions are described to have varying maximum permissible building height, area, fire resistance rating (FRR), and interior exposed timber. Through a comparison of mass timber provisions of both Codes, relevant research reports, test reports, industry standards, this report documents the consequential and inconsequential differences and developed conclusions on whether the NBCC can adopt the IBC provisions, and with what modifications so that the new provisions may fit the NBCC context.
Online Access
Free
Resource Link
Less detail

Enhancing Thermal and Mechanical Performance of Engineered Wood Product Adhesives using Novel Fire Retardant Nanoclays

https://research.thinkwood.com/en/permalink/catalogue2810
Year of Publication
2021
Topic
Mechanical Properties
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Oguzlu-Baldelli, Hale
Yu, Jason
Lee, George
Lam, Frank
Jiang, Feng
Organization
University of British Columbia
Year of Publication
2021
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Mechanical Properties
Fire
Keywords
Adhesive
PUR
Bond Strength
Halloysite
pMDI
Douglas-Fir
SPF
Bonding Shear Strength
Language
English
Research Status
Complete
Summary
One component PUR adhesive is widely used in engineered wood products applications, such as cross-laminated timber (CLT). However, the dramatic deterioration of PUR adhesive bond strength at elevated temperature can out tremendously threat for tall wood building, especially under fire. In this project, we are aiming to improving the bond strength of the PUR adhesive at high temperature by incorporating chemically modified halloysite to improve the poor interface between inorganic fillers and the polymer matrices. To improve the interaction with PUR (Loctite UR20 by Henkel®), the halloysite was chemically grafted with polymeric diphenylmethane diisocyanate (pMDI) (pMDI-H). The effect of adding pMDI modified halloysite to the PUR adhesives was investigated in terms of nanofiller dispersibility, thermal and mechanical properties of the pMDI-halloysite-PUR composite film, and the bonding shear strength of the glued Douglas fir and Spruce-Pine-Fir (SPF) shear blocks under different temperature. Significant improvement of the bond shear strength can be observed with the addition of 5 and 10% of pMDI-modified PUR adhesive, and the key research findings are summarized as below, a. pMDI can be successfully grafted onto hydroxylated halloysites to improve its dispersibility in one-component PUR adhesive; b. Addition of pMDI-H into PUR adhesive can lead to improved glass transition temperature and storage modulus. In contrast, no significant enhancement was observed in h-H added PUR films due to the poor dispersibility; c. Addition of up to 10% h-H and pMDI-H did not show significant change of the shear strength at 20 °C for both Douglas Fir and SPF; d. Significant enhancement of shear strength at elevated temperature (60-100 °C) can be observed for 5% and 10% pMDI-H modified PUR adhesive, showing 17% improvement for Douglas Fir and 27-37% for SPF.
Online Access
Free
Resource Link
Less detail

Sustainability Assessment of Modern High-Rise Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2820
Year of Publication
2021
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Author
Tupenaite, Laura
Zilenaite, Viktorija
Kanapeckiene, Loreta
Gecys, Tomas
Geipele, Ineta
Publisher
MDPI
Year of Publication
2021
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Topic
Environmental Impact
Keywords
High-Rise
Sustainability
Multi-criteria assessment
Indicators
Mass Timber
Language
English
Research Status
Complete
Series
Sustainability
Summary
As woodworking and construction technologies improve, the construction of multi-storey timber buildings is gaining popularity worldwide. There is a need to look at the design of existing buildings and assess their sustainability. The aim of the present study is to assess the sustainability of modern high-rise timber buildings using multi-criteria assessment methods. The paper presents a hierarchical system of sustainability indicators and an assessment framework, developed by the authors. Based on this framework, the tallest timber buildings in different countries, i.e., Mjøstårnet in Norway, Brock Commons in Canada, Treet in Norway, Forte in Australia, Strandparken in Sweden and Stadthaus in UK, were compared across the three dimensions of sustainability (environmental, economic/technological, and social). Research has revealed that none of the buildings is leading in all dimensions of sustainability. However, each building is unique and has its own strengths. Overall multi-criteria assessment of the buildings revealed that the Brock Commons building in Canada has received the highest rank in all dimensions of sustainability. The paper contributes to the theory and practice of sustainability assessment and extends the knowledge about high-rise timber buildings. The proposed sustainability assessment framework can be used by both academics and practitioners for assessment of high-rise timber buildings.
Online Access
Free
Resource Link
Less detail

Fire Performance of Mass Timber

https://research.thinkwood.com/en/permalink/catalogue2824
Year of Publication
2021
Topic
Fire
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
Dagenais, Christian
Ranger, Lindsay
Organization
FPInnovations
Year of Publication
2021
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Fire
Keywords
Fire Resistance
CSA 086
National Design Specifications for Wood Construction (NDSR)
Fire Test
Fire Stopping
Connections
Insurance
Mass Timber
Language
English
Research Status
Complete
Series
InfoNote
Summary
This InfoNote summarizes recent research and work in progress. A significant amount of fire research has been conducted on mass timber over the last 10 years in Canada. This has supported the successful design and construction of numerous low-, mid-and even high-rise wood buildings. This has also fostered the introduction of new provisions into the National Building Code of Canada which has made wood and mass timber construction more accessible. However, the fire performance of these systems remains a concern for many potential occupants or owners of these buildings, not to mention building officials and fire departments. Research at FPInnovations continues to support designers and builders in the use of mass timber assemblies by ensuring fire safe designs.
Online Access
Free
Resource Link
Less detail

639 records – page 1 of 64.