Skip header and navigation

63 records – page 1 of 7.

Comparative life cycle assessment of cross laminated timber building and concrete building with special focus on biogenic carbon

https://research.thinkwood.com/en/permalink/catalogue2913
Year of Publication
2022
Topic
Environmental Impact
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Andersen, Julie
Rasmussen, Nana
Ryberg, Morten
Organization
Technical University of Denmark
Publisher
Elsevier
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Energy Performance
Keywords
Life-Cycle Assessment
Biogenic Carbon
Forest Transformation
Research Status
Complete
Series
Energy and Buildings
Summary
This study conducted a consequential Life Cycle Assessment (LCA) on two similar mid-rise apartment buildings applying either concrete or cross laminated timber (CLT) as the main structural material. The study further investigated inclusion of biogenic carbon and how this affects environmental impacts related to Global warming. Thus, two assessment scenarios were applied: A Base scenario, without accounting for biogenic carbon and a Biogenic carbon scenario that include a GWPbio factor to account for the use of biogenic carbon. The CLT building had the lowest impact score in 11 of 18 impact categories including Global warming. Operational energy use was the main contributor to the total impact with some variation across impact scores, but closely followed by impacts embodied in materials (incl. End-of-Life). An evaluation of the potential forest transformations required for fulfilling future projections for new building construction in 2060 showed that about 3% of current global forest area would be needed. This share was essentially independent of the selected building material as the main driver for forest transformation was found to be energy use during building operation. Thus, focus should primarily be on reducing deforestation related to energy generation rather than deforestation from production of building materials.
Online Access
Free
Resource Link
Less detail

What Is the Impact of Mass Timber Utilization on Climate and Forests?

https://research.thinkwood.com/en/permalink/catalogue2921
Year of Publication
2022
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Pasternack, Rachel
Wishnie, Mark
Clarke, Caitlin
Wang, Yangyang
Belair, Ethan
Marshall, Steve
Gu, Hongmei
Nepal, Prakash
NDolezal, Franz
Lomax, Guy
Johnston, Craig
Felmer, Gabriel
Morales-Vera, Rodrigo
Puettmann, Maureen
Huevel, Robyn
Organization
USDA Forest Service Forest Products Laboratory
University of Exeter
Universidad de Chile
Universidad Católica del Maule
Editor
Ganguly, Indroneil
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
Climate Change
Embodied Carbon
Carbon Storage
Research Status
Complete
Series
Sustainability
Summary
As the need to address climate change grows more urgent, policymakers, businesses, and others are seeking innovative approaches to remove carbon dioxide emissions from the atmosphere and decarbonize hard-to-abate sectors. Forests can play a role in reducing atmospheric carbon. However, there is disagreement over whether forests are most effective in reducing carbon emissions when left alone versus managed for sustainable harvesting and wood product production. Cross-laminated timber is at the forefront of the mass timber movement, which is enabling designers, engineers, and other stakeholders to build taller wood buildings. Several recent studies have shown that substituting mass timber for steel and concrete in mid-rise buildings can reduce the emissions associated with manufacturing, transporting, and installing building materials by 13%-26.5%. However, the prospect of increased utilization of wood products as a climate solution also raises questions about the impact of increased demand for wood on forest carbon stocks, on forest condition, and on the provision of the many other critical social and environmental benefits that healthy forests can provide. A holistic assessment of the total climate impact of forest product demand across product substitution, carbon storage in materials, current and future forest carbon stock, and forest area and condition is challenging, but it is important to understand the impact of increased mass timber utilization on forests and climate, and therefore also on which safeguards might be necessary to ensure positive outcomes. To thus assess the potential impacts, both positive and negative, of greater mass timber utilization on forests ecosystems and emissions associated with the built environment, The Nature Conservancy (TNC) initiated a global mass timber impact assessment (GMTIA), a five-part, highly collaborative research program focused on understanding the potential benefits and risks of increased demand for mass timber products on forests and identifying appropriate safeguards to ensure positive outcomes.
Online Access
Free
Resource Link
Less detail

A Lifecycle Assessment of a Low-Energy Mass-Timber Building and Mainstream Concrete Alternative in Central Chile

https://research.thinkwood.com/en/permalink/catalogue2922
Year of Publication
2022
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Felmer, Gabriel
Morales-Vera, Rodrigo
Astroza, Rodrigo
González, Ignacio
Puettmann, Maureen
Wishnie, Mark
Organization
Universidad de Chile
Universidad Católica del Maule
Universidad Bernardo O’Higgins
Universidad de los Andes
Editor
Caggiano, Antonio
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
Mid-Rise
Carbon Storage
Passive Zero Carbon Housing
Research Status
Complete
Series
Sustainability
Summary
While high-rise mass-timber construction is booming worldwide as a more sustainable alternative to mainstream cement and steel, in South America, there are still many gaps to overcome regarding sourcing, design, and environmental performance. The aim of this study was to assess the carbon emission footprint of using mass-timber products to build a mid-rise low-energy residential building in central Chile (CCL). The design presented at a solar decathlon contest in Santiago was assessed through lifecycle analysis (LCA) and compared to an equivalent mainstream concrete building. Greenhouse gas emissions, expressed as global warming potential (GWP), from cradle-to-usage over a 50-year life span, were lower for the timber design, with 131 kg CO2 eq/m2 of floor area (compared to 353 kg CO2 eq/m2) and a biogenic carbon storage of 447 tons of CO2 eq/m2 based on sustainable forestry practices. From cradle-to-construction, the embodied emissions of the mass-timber building were 42% lower (101 kg CO2 eq/m2) than those of the equivalent concrete building (167 kg CO2 eq/m2). The embodied energy of the mass-timber building was 37% higher than that of its equivalent concrete building and its envelope design helped reduce space-conditioning emissions by as much as 83%, from 187 kg CO2 eq/m2 as estimated for the equivalent concrete building to 31 kg CO2 eq/m2 50-yr. Overall, provided that further efforts are made to address residual energy end-uses and end-of-life waste management options, the use of mass-timber products offers a promising potential in CCL for delivering zero carbon residential multistory buildings.
Online Access
Free
Resource Link
Less detail

Life Cycle Assessment of Cross-Laminated Timber Transportation from Three Origin Points

https://research.thinkwood.com/en/permalink/catalogue2923
Year of Publication
2022
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Author
Hemmati, Mahboobeh
Messadi, Tahar
Gu, Hongmei
Organization
University of Arkansas
USDA Forest Service Forest Products Laboratory
Editor
D’Acierno, Luca
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
Mass Timber
Global Warming Potential
Transportation
Research Status
Complete
Series
Sustainability
Summary
Cross-laminated timber (CLT) used in the U.S. is mainly imported from abroad. In the existing literature, however, there are data on domestic transportation, but little understanding exists about the environmental impacts from the CLT import. Most studies use travel distances to the site based on domestic supply origins. The new Adohi Hall building at the University of Arkansas campus, Fayetteville, AR, presents the opportunity to address the multimodal transportation with overseas origin, and to use real data gathered from transporters and manufacturers. The comparison targets the environmental impacts of CLT from an overseas transportation route (Austria-Fayetteville, AR) to two other local transportation lines. The global warming potential (GWP) impact, from various transportation systems, constitutes the assessment metric. The findings demonstrate that transportation by water results in the least greenhouse gas (GHG) emission compared with freight transportation by rail and road. Transportation by rail is the second most efficient, and by road the least environmentally efficient. On the other hand, the comparison of the life cycle assessment (LCA) tools, SimaPro (Ecoinvent database) and Tally (GaBi database), used in this research, indicate a remarkable difference in GWP characterization impact factors per tonne.km (tkm), primarily due to the different database used by each software.
Online Access
Free
Resource Link
Less detail

Comparative Cradle-to-Grave Life Cycle Assessment of Low and Mid-Rise Mass Timber Buildings with Equivalent Structural Steel Alternatives

https://research.thinkwood.com/en/permalink/catalogue2880
Year of Publication
2021
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Allan, Kevin
Phillips, Adam
Organization
Washington State University
Editor
Bakolas, Asterios
Publisher
MDPI
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Steel
Sustainability
Life-Cycle Assessment
Life-Cycle Impact Assessment
Research Status
Complete
Series
Sustainability
Summary
The objective of this paper was to quantify and compare the environmental impacts associated with alternative designs of typical North American low and mid-rise buildings. Two scenarios were considered: a traditional structural steel frame or an all-wood mass timber design, utilizing engineered wood products for both gravity and lateral load resistance. The boundary of the quantitative analysis was cradle-to-grave with considerations taken to discuss end-of-life and material reuse scenarios. The TRACI methodology was followed to conduct a Life Cycle Impact Assessment (LCIA) analysis that translates building quantities to environmental impact indicators using the Athena Impact Estimator for Buildings Life Cycle analysis software tool and Athena’s Life Cycle Inventory database. The results of the analysis show that mass timber buildings have an advantage with respect to several environmental impact categories, including eutrophication potential, human health particulate, and global warming potential where a 31% to 41% reduction was found from mass timber to steel designs, neglecting potential carbon sequestration benefits from the timber products. However, it was also found that the steel buildings have a lower impact with respect to the environmental impact categories of smog potential, acidification potential, and ozone depletion potential, where a 48% to 58% reduction was found from the steel to the mass timber building designs.
Online Access
Free
Resource Link
Less detail

Comparative LCAs of Conventional and Mass Timber Buildings in Regions with Potential for Mass Timber Penetration

https://research.thinkwood.com/en/permalink/catalogue2885
Year of Publication
2021
Topic
Environmental Impact
Application
Wood Building Systems
Author
Puettmann, Maureen
Pierobon, Francesca
Ganguly, Indroneil
Gu, Hongmei
Chen, Cindy
Liang, Shaobo
Jones, Susan
Maples, Ian
Wishnie, Mark
Organization
University of Washington
Forest Products Laboratory
Portland State University
Editor
Borghi, Adriana Del
Publisher
MDPI
Year of Publication
2021
Format
Journal Article
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Mass Timber
Life-Cycle Assessment
Embodied Carbon
Embodied Energy
Research Status
Complete
Series
Sustainability
Summary
Manufacturing of building materials and construction of buildings make up 11% of the global greenhouse gas emission by sector. Mass timber construction has the potential to reduce greenhouse gas emissions by moving wood into buildings with designs that have traditionally been dominated by steel and concrete. The environmental impacts of mass timber buildings were compared against those of functionally equivalent conventional buildings. Three pairs of buildings were designed for the Pacific Northwest, Northeast and Southeast regions in the United States to conform to mass timber building types with 8, 12, or 18 stories. Conventional buildings constructed with concrete and steel were designed for comparisons with the mass timber buildings. Over all regions and building heights, the mass timber buildings exhibited a reduction in the embodied carbon varying between 22% and 50% compared to the concrete buildings. Embodied carbon per unit of area increased with building height as the quantity of concrete, metals, and other nonrenewable materials increased. Total embodied energy to produce, transport, and construct A1–A5 materials was higher in all mass timber buildings compared to equivalent concrete. Further research is needed to predict the long-term carbon emissions and carbon mitigation potential of mass timber buildings to conventional building materials.
Online Access
Free
Resource Link
Less detail

Mass Timber Building Life Cycle Assessment Methodology for the U.S. Regional Case Studies

https://research.thinkwood.com/en/permalink/catalogue2887
Year of Publication
2021
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Gu, Hongmei
Liang, Shaobo
Pierobon, Francesca
Puettmann, Maureen
Ganguly, Indroneil
Chen, Cindy
Pasternack, Rachel
Wishnie, Mark
Jones, Susan
Maples, Ian
Organization
Forest Products Laboratory
University of Washington
Population Research Center
Editor
Jasinskas, Algirdas
Publisher
MDPI
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
Mass Timber
Whole-building LCA Methodology
Research Status
Complete
Series
Sustainability
Summary
The building industry currently consumes over a third of energy produced and emits 39% of greenhouse gases globally produced by human activities. The manufacturing of building materials and the construction of buildings make up 11% of those emissions within the sector. Whole-building life-cycle assessment is a holistic and scientific tool to assess multiple environmental impacts with internationally accepted inventory databases. A comparison of the building life-cycle assessment results would help to select materials and designs to reduce total environmental impacts at the early planning stage for architects and developers, and to revise the building code to improve environmental performance. The Nature Conservancy convened a group of researchers and policymakers from governments and non-profit organizations with expertise across wood product life-cycle assessment, forest carbon, and forest products market analysis to address emissions and energy consumption associated with mass timber building solutions. The study disclosed a series of detailed, comparative life-cycle assessments of pairs of buildings using both mass timber and conventional materials. The methodologies used in this study are clearly laid out in this paper for transparency and accountability. A plethora of data exists on the favorable environmental performance of wood as a building material and energy source, and many opportunities appear for research to improve on current practices.
Online Access
Free
Resource Link
Less detail

Eco-Sustainable Wood Waste Panels for Building Applications: Influence of Different Species and Assembling Techniques on Thermal, Acoustic, and Environmental Performance

https://research.thinkwood.com/en/permalink/catalogue2892
Year of Publication
2021
Topic
Market and Adoption
Material
Other Materials
Author
Merli, Francesca
Belloni, Elisa
Buratti, Cinzia
Organization
University of Perugia
Editor
Tannert, Thomas
Publisher
MDPI
Year of Publication
2021
Format
Journal Article
Material
Other Materials
Topic
Market and Adoption
Keywords
Recycled Wood Waste
Eco-sustainable Panels
Thermal Properties
Acoustic Characteristics
Life-Cycle Assessment
Research Status
Complete
Series
Buildings
Summary
Multiple high quality wood waste from a window manufacturer is identified and collected. Eco-sustainable panels, with promising acoustic and thermal insulating performance, were then fabricated. The available wood is of different tree species (pine, oak, and mahogany) and size (pieces of wood, mixed coarse chips, and mixed fine chips). Moreover, scraps of olive tree pruning from local areas were collected for reuse. The aim of the research is to assembly panels (300 × 300 mm2) both with different techniques (hand-made and hot-pressed) and type of adhesive (vinyl and flour glues) and to evaluate their thermal, acoustic, and environmental performance. All the panels present thermal and acoustic performance comparable with the similar ones available in the literature or with commercial solutions. The thermal conductivity varies in the 0.071 to 0.084 W/mK range at an average temperature of 10 °C, depending on the tree species, the assembly technique, and regardless of the type of adhesive used. Oak wood panels are characterized by both better sound absorption (a peak value of 0.9, similar to pine pressed sample with flour glue) and insulation (transmission loss up to 11 dB at 1700 Hz) properties. However, their added value is the low environmental impact assessed through life cycle analysis in compliance with ISO 14040, especially for panels assembled with natural glue.
Online Access
Free
Resource Link
Less detail

Life Cycle Assessment of North American Laminated Strand Lumber (LSL) Production

https://research.thinkwood.com/en/permalink/catalogue2953
Year of Publication
2021
Topic
Environmental Impact
Material
LSL (Laminated Strand Lumber)
Application
Wood Building Systems
Author
Khatri, Poonam
Sahoo, Kamalakanta
Bergman, Richard
Puettmann, Maureen
Organization
Forest Products Laboratory
University of Wisconsin-Madison
Editor
Brito, Jorge
Publisher
Lidsen Publishing Inc.
Year of Publication
2021
Format
Journal Article
Material
LSL (Laminated Strand Lumber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Engineered Wood Product (EWP)
Green Buildings
Life-Cycle Assessment
Environmental Product Declaration
Research Status
Complete
Series
Recent Progress in Materials
Summary
Raw materials for buildings and construction account for more than 35% of global primary energy use and nearly 40% of energy-related CO2 emissions. The Intergovernmental Panel on Climate Change (IPCC) emphasized the drastic reduction in GHG emissions and thus, wood products with very low or negative carbon footprint materials can play an important role. In this study, a cradle-to-grave life cycle assessment (LCA) approach was followed to quantify the environmental impacts of laminated strand lumber (LSL). The inventory data represented North American LSL production in terms of input materials, including wood and resin, electricity and fuel use, and production facility emissions for the 2019 production year. The contribution of cradle-to-gate life cycle stages was substantial (>70%) towards the total (cradle-to-grave) environmental impacts of LSL. The cradle-to-gate LCA results per m³ LSL were estimated to be 275 kg CO2 eq global warming, 39.5 kg O3eq smog formation, 1.7 kg SO2 eq acidification, 0.2 kg N eq eutrophication, and 598 MJ fossil fuel depletion. Resin production as a part of resource extraction contributed 124 kg CO2 eq (45%). The most relevant unit processes in their decreasing contribution to their cradle-to-grave GW impacts were resource extraction, end-of-life (EoL), transportation (resources and product), and LSL manufacturing. Results of sensitivity analysis showed that the use of adhesive, consumption of electricity, and transport distance had the greatest influences on the LCA results. Considering the whole life cycle of the LSL, the final product stored 1,010 kg CO2 eq/m³ of LSL, roughly two times more greenhouse gas emissions over than what was released (493 kg CO2 eq/m³ of LSL) from cradle-to-grave. Overall, LSL has a negative GW impact and acts as a carbon sink if used in the construction sector. The study results are intended to be important for future studies, including waste disposal and recycling strategies to optimize environmental trade-offs.
Online Access
Free
Resource Link
Less detail

Environmental and Economic Evaluation of Small-Scale Bridge Repair Using Cross-Laminated Timber Floor Slabs

https://research.thinkwood.com/en/permalink/catalogue2397
Year of Publication
2020
Topic
Design and Systems
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Bridges and Spans

63 records – page 1 of 7.