Skip header and navigation

Refine Results By

148 records – page 1 of 15.

Acoustically-Tested Mass Timber Assemblies

https://research.thinkwood.com/en/permalink/catalogue1874
Year of Publication
2019
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Walls

Elevated Temperature Effects on the Shear Performance of a Cross-Laminated Timber (CLT) Wall-to-Floor Bracket Connection

https://research.thinkwood.com/en/permalink/catalogue2106
Year of Publication
2019
Topic
Fire
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors

Feasibility of Predictive Assessment of Bending Performance of CLT Plates of Canadian Hemlock

https://research.thinkwood.com/en/permalink/catalogue2107
Year of Publication
2019
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
General Application
Walls

Structural Design and Modelling Method for the Post-Tensioned CLT Shear Wall Structures

https://research.thinkwood.com/en/permalink/catalogue2149
Year of Publication
2019
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls

Research Needs Assessment for the Mass Timber Industry: Proceedings of the 2nd North American Mass Timber Research Needs Workshop

https://research.thinkwood.com/en/permalink/catalogue2164
Year of Publication
2019
Topic
General Information
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Application
General Application
Shear Walls
Walls
Wood Building Systems
Floors
Columns
Bridges and Spans

Numerical Study on De Elastic Buckling of CLT Walls Subjected to Compressive Loads

https://research.thinkwood.com/en/permalink/catalogue2169
Year of Publication
2019
Topic
Design and Systems
Connections
Material
CLT (Cross-Laminated Timber)
Application
Walls

Evaluation of Horizontal Shear Performance of Larch CLT Walls According to the Edge Connection Shape

https://research.thinkwood.com/en/permalink/catalogue2205
Year of Publication
2019
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Song, Yo-Jin
Hwan Lee, In
Hong, Soon-Il
Publisher
VUPC
Year of Publication
2019
Country of Publication
Slovakia
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Mechanical Properties
Keywords
Shear Performance
Shear Walls
Larch
Cyclic Tests
Half-Lap
Language
English
Research Status
Complete
Series
Wood Research
Online Access
Free
Resource Link
Less detail

Carbon Value Engineering: Integrated Carbon and Cost Reduction Strategies for Building Design

https://research.thinkwood.com/en/permalink/catalogue2268
Year of Publication
2019
Topic
Environmental Impact
Cost
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Walls
Beams
Author
Robati, Mehdi
Oldfield, Philip F.
Nezhad, Ali Akbar
Carmichael, David
Organization
UNSW Sydney
Multiplex Australasia
Publisher
Cooperative Research for Low Carbon Living
Year of Publication
2019
Country of Publication
Australia
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Walls
Beams
Topic
Environmental Impact
Cost
Keywords
Value Engineering
Embodied Carbon
Hybrid Life Cycle Assessment
Capital Cost
Environmentally-extended Input-Output Analysis
Language
English
Research Status
Complete
Summary
The research presents a Carbon Value Engineering framework. This is a quantitative value analysis method, which not only estimates cost but also considers the carbon impact of alternative design solutions. It is primarily concerned with reducing cost and carbon impacts of developed design projects; that is, projects where the design is already a completed to a stage where a Bill of Quantity (BoQ) is available, material quantities are known, and technical understanding of the building is developed. This research demonstrates that adopting this integrated carbon and cost method was able to reduce embodied carbon emissions by 63-267 kgCO2-e/m2 (8-36%) when maintaining a concrete frame, and 72-427 kgCO2-e/m2 (10-57%) when switching to a more novel whole timber frame. With a GFA of 43,229 m2 these savings equate to an overall reduction of embodied carbon in the order of 2,723 – 18,459 tonnes of CO2-e. Costs savings for both alternatives were in the order of $127/m2 which equates to a 10% reduction in capital cost. For comparison purposes the case study was also tested with a high-performance façade. This reduced lifecycle carbon emissions in the order of 255 kgCO2-e/m2, over 50 years, but at an additional capital cost, due to the extra materials. What this means is strategies to reduce embodied carbon even late in the design stage can provide carbon savings comparable, and even greater than, more traditional strategies to reduce operational emissions over a building’s effective life.
Online Access
Free
Resource Link
Less detail

Corss-Laminated Timber Buildings: A WBLCA Case Study Series

https://research.thinkwood.com/en/permalink/catalogue2360
Year of Publication
2019
Topic
Environmental Impact
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Walls
Author
Kwok, Alison
Zalusky, Hannah
Rasmussen, Linsday
Rivera, Isabel
McKay, Hannah
Organization
TallWood Design Institute
Year of Publication
2019
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Walls
Topic
Environmental Impact
Design and Systems
Keywords
LCA
Life-Cycle Assessment
Case Study
Embodied Carbon
Language
English
Research Status
Complete
Summary
This series highlights five whole building life cycle assessments (WBLCAs) of buildings incorporating the building material known as cross-laminated timber (CLT) into some or all of their structure, using a primary cradle-to-grave system boundary. This case study series will serve as an educational resource for academics, professionals, and CLT project stakeholders. While there is some uncertainty about the best way to reduce greenhouse gas emissions from architecture and construction, using CLT and other wood building materials is one possible means to reduce the emissions associated with a building’s materials. When forests are managed sustainably, wood construction materials can contribute to climate change mitigation goals as an indefinite carbon store and as a replacement of other fossil-fuel intensive materials. WBLCA is an assessment method to estimate the environmental impacts of buildings; this series offers insight into the current possibilities and limitations of WBLCA for CLT buildings. The series begins with background information on WBLCA methods and CLT, a review of previously published CLT building WBLCAs, and a life cycle assessment of an individual CLT wall element using the WBLCA softwares Tally® and Athena Impact Estimator for Buildings (Athena IE).
Online Access
Free
Resource Link
Less detail

Blast Testing of Loaded Mass Timber Structures

https://research.thinkwood.com/en/permalink/catalogue1164
Year of Publication
2018
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Walls

148 records – page 1 of 15.