Skip header and navigation

Refine Results By

1063 records – page 1 of 107.

Effects of Component Ratio of the Face and Core Laminae on Static Bending Strenght Performance of Three-Ply Cross-Laminated Wood Panels with Sugi (Cryptomeria Japonica)

https://research.thinkwood.com/en/permalink/catalogue1468
Year of Publication
2006
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Park, Han-Min
Fushitani, Masami
Publisher
Society of Wood Science and Technology
Year of Publication
2006
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Sugi
Lamina Thickness
Modulus of Elasticity
Modulus of Rupture
Proportional Limit Stress
Bending Strength
Language
English
Research Status
Complete
Series
Wood and Fiber Science
Summary
In order to improve the bending strength performance of three-ply laminated wood panels and use them as construction-grade panel materials, twelve types of three-ply cross-laminated wood panels whose percentages of core lamina thickness versus total lamina thickness were 33%, 50%, and 80% were made with sugi (Japanese cedar)...
Online Access
Free
Resource Link
Less detail

Design of Cross Laminated Timber (CLT)

https://research.thinkwood.com/en/permalink/catalogue1571
Year of Publication
2008
Topic
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)

Non Destructive Evaluation of Elastic Material Properties of Cross-Laminated Timber (CLT)

https://research.thinkwood.com/en/permalink/catalogue2315
Year of Publication
2008
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Cross Laminated Timber (CLT) – Reinforcements with Self-Tapping Screws

https://research.thinkwood.com/en/permalink/catalogue1487
Year of Publication
2010
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Mestek, Peter
Winter, Stefan
Year of Publication
2010
Country of Publication
Italy
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Concentrated Loads
Self-Tapping Screws
FEM
Rolling Shear Stress
Compression
Strengthening
Load Bearing
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
June 20-24, 2010, Riva del Garda, Italy
Online Access
Free
Resource Link
Less detail

Prediction of Dynamic Response of a 7-Storey Massive XLam Wooden Building Tested on a Shaking Table

https://research.thinkwood.com/en/permalink/catalogue1885
Year of Publication
2010
Topic
Seismic
Material
CLT (Cross-Laminated Timber)

Lateral Load Resistance of Cross-Laminated Wood Panels

https://research.thinkwood.com/en/permalink/catalogue2150
Year of Publication
2010
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls

Preliminary Assessment of Hygrothermal Performance of Cross-Laminated Timber Wall Assemblies Using Hygrothermal Models

https://research.thinkwood.com/en/permalink/catalogue2628
Year of Publication
2010
Topic
Moisture
Design and Systems
Serviceability
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Author
Wang, J.
Baldracchi, P.
Organization
FPInnovations
Year of Publication
2010
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Topic
Moisture
Design and Systems
Serviceability
Keywords
Hygrothermal
Moisture Performance
Rainscreen
Language
English
Research Status
Complete
Summary
Preliminary simulation was carried out using hygIRC and WUFI, both 1-D hygrothermal models, to analyze moisture performance of rainscreened wood-frame walls and cross-laminated timber (CLT) walls for the climates in Vancouver and Calgary. The major results are as follows. In order to provide baseline knowledge, preliminary comparisons between hygIRC and WUFI were conducted to investigate the effects of climate data, wall orientations and rain intrusion on the performance of the rainscreened wood-frame walls based on Vancouver’s climate. hygIRC tended to produce almost constant moisture content (MC) of the plywood sheathing throughout a year but WUFI showed greater variations, particularly when the ventilation of the rainscreen cavity was neglected. Rainscreen cavity ventilation provided dramatic drying potentials for wall assemblies based on the WUFI simulation. hygIRC indicated that east-facing walls had the highest moisture load, but the differences between orientations seemed negligible in WUFI when the rainscreen cavity ventilation was taken into account. When 1% of wind-driven rain was simulated as an additional moisture load, hygIRC suggested that the rainscreen walls could not dry out in Vancouver, WUFI, however, indicated that they could dry to a safe MC level in the summer. The discrepancies in material property data between the two models and between different databases in WUFI (even for the same wood species) were found to be very large. In terms of wood sorption data, large differences existed at near-saturated RH levels. This is a result of using pressure-plate/membrane methods for measuring material equilibrium moisture content (EMC) under high RH conditions. The EMC of wood at near-100% RH conditions measured with these methods can be higher than 200%, suggesting wood in construction would decay without liquid water intrusion or severe vapour condensation. The pressure-plate/membrane methods also appeared to be highly species-dependent, and have higher EMC at a certain RH level for less permeable species, from which it is relatively difficult to remove water during the measurement. The hygrothermal simulation in this work suggested that such a species bias caused by testing methods could put impermeable species (most Canadian species) at a disadvantage to permeable species like southern pine during related durability design of building assemblies. In terms of using CLT for construction in Vancouver and Calgary, the WUFI simulations suggested that the use of less permeable materials such as EPS (expanded polystyrene insulation), XPS (extruded polystyrene insulation), self-adhered bituminous membrane and polyethylene in wall assemblies reduced the ability of the walls to dry. On the other hand, permeable assemblies such as those using relatively permeable insulation like semi-rigid mineral wool (rock wool) as exterior insulation, instead of less permeable exterior insulation materials, would help walls dry. The simulation also suggested that using CLT products with initially low MC would significantly reduce moisture-related risks, which indicated the importance of protecting CLT and avoiding wetting during transportation and construction. In addition, the simulation found that indoor relative humidity (RH) conditions generated by the indoor RH prediction models included in hygIRC and WUFI varied greatly under the same basic climate and building conditions. The intermediate method specified in ASHRAE Standard 160 P resulted in long periods of saturated RH conditions throughout a year for the Vancouver climate, which may not be representative of ordinary residential buildings in Vancouver. The simulation in this study is preliminary and exploratory. It would be arbitrary to recommend one model over the other based on this report or use the simulation results directly for CLT wall assembly design without consultation with building science specialists. However, this work revealed more opportunities for close collaborations between the wood science and the building science communities. More work should be carried out to develop appropriate testing methods and assemble material property data for hygrothermal simulation of wood-based building assemblies. Model improvement and field verification are also strongly recommended, particularly for new building systems such as CLT constructions.
Online Access
Free
Resource Link
Less detail

Manufacturing Cross-Laminated Timber (CLT): Technological and Economic Analysis

https://research.thinkwood.com/en/permalink/catalogue2636
Year of Publication
2010
Topic
Cost
Design and Systems
Material
CLT (Cross-Laminated Timber)
Author
Julien, F.
Organization
FPInnovations
Year of Publication
2010
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Cost
Design and Systems
Keywords
Manufacturing
Economic Analysis
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Behavior of Interlocking Cross-Laminated Timber (ICLT) Shear Walls

https://research.thinkwood.com/en/permalink/catalogue240
Year of Publication
2011
Topic
Connections
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls

Wind-Induced Vibration of Tall Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue1105
Year of Publication
2011
Topic
Wind
Connections
Material
Glulam (Glue-Laminated Timber)
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

1063 records – page 1 of 107.