Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Timber Rivets in Structural Composite Lumber

https://research.thinkwood.com/en/permalink/catalogue777
Year of Publication
2004
Topic
Connections
Material
LSL (Laminated Strand Lumber)
PSL (Parallel Strand Lumber)
Author
Wolfe, Ronald
Begel, Marshall
Craig, Bruce
Organization
Forest Products Laboratory
Year of Publication
2004
Country of Publication
United States
Format
Report
Material
LSL (Laminated Strand Lumber)
PSL (Parallel Strand Lumber)
Topic
Connections
Keywords
Pine
Poplar
Rivets
Failure
Language
English
Research Status
Complete
Summary
Timber rivet connections, originally developed for use with glulam construction, may be a viable option for use with structural composite lumber (SCL) products. Tests were conducted on small samples to assess the performance and predictability of timber ...
Online Access
Free
Resource Link
Less detail

Fire Resistance of Structural Composite Lumber Products

https://research.thinkwood.com/en/permalink/catalogue790
Year of Publication
2006
Topic
Fire
Material
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
PSL (Parallel Strand Lumber)
Author
White, Robert
Organization
Forest Products Laboratory
Year of Publication
2006
Country of Publication
United States
Format
Report
Material
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
PSL (Parallel Strand Lumber)
Topic
Fire
Keywords
Char Rate
Fire Resistance
Language
English
Research Status
Complete
Summary
Use of structural composite lumber products is increasing. In applications requiring a fire resistance rating, calculation procedures are used to obtain the fire resistance rating of exposed structural wood products. A critical factor in the calculation ...
Online Access
Free
Resource Link
Less detail

Structural Safety and Rehabilitation of Connections in Wide-Span Timber Structures - Two Exemplary Truss Systems

https://research.thinkwood.com/en/permalink/catalogue1485
Year of Publication
2008
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Bridges and Spans

Design of Cross Laminated Timber (CLT)

https://research.thinkwood.com/en/permalink/catalogue1571
Year of Publication
2008
Topic
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)

New Applications of Timber in Non-Traditional Market Segments, High Rise Residential and Non-Residential (Commercial) Buildings

https://research.thinkwood.com/en/permalink/catalogue1934
Year of Publication
2009
Topic
Market and Adoption
Application
Wood Building Systems

Seismic Performance of 6-Storey Wood-Frame Buildings: Final Report

https://research.thinkwood.com/en/permalink/catalogue2638
Year of Publication
2009
Topic
Seismic
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Ni, Chun
Popovski, Marjan
Organization
FPInnovations
Year of Publication
2009
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Seismic
Keywords
Mid-Rise
Residential
Building Code
Language
English
Research Status
Complete
Summary
spIn this report, the seismic performance of 6-storey wood frame residential buildings is studied. Two building configurations, a typical wood-frame residential building and a building to be tested under the NEESWood project, were studied. For each building configuration, a four-storey building and a six-storey building were designed to the current (pre-April 6, 2009) 2006 BC Building Code (BCBC) and to the anticipated new requirements in the 2010 National Building Code of Canada (NBCC), resulting in four buildings with different designs. The four-storey building designed to the current 2006 BC Building Code served as the benchmark building representing the performance of current permissible structures with common architectural layouts. In the design of both four-storey and six-storey buildings, it was assumed that the buildings are located in Vancouver on a site with soil class C. Instead of using the code formula, the fundamental natural period of the buildings was determined based on the actual mass and stiffness of wood-based shearwalls. The base shear and inter-storey drift are determined in accordance with Clauses 4.1.8.11.(3)(d)(iii) and 4.1.8.11.(3)(d)(iv) of BCBC, respectively. Computer programs DRAIN 3-D and SAPWood were used to evaluate the seismic performance of the buildings. A series of 20 different earthquake records, 14 of the crustal type and 6 of the subcrustal type, were provided by the Earthquake Engineering Research Facility of the University of British Columbia and used in the evaluation. The records were chosen to fit the 2005 NBCC mean PSA and PSV spectra for the city of Vancouver. For representative buildings designed in accordance with 2006 BCBC, seismic performance with and without gypsum wall board (GWB) is studied. For representative buildings designed in accordance with the 2010 NBCC, the seismic performance with GWB is studied. For the NEESWood building redesigned in accordance with 2010 NBCC, seismic performance without GWB is studied. Ignoring the contribution of GWB would result in a conservative estimate of the seismic performance of the building. In the 2006 BCBC and 2010 NBCC, the inter-storey drift limit is set at 2.5 % of the storey height for the very rare earthquake event (1 in 2475 year return period). Limiting inter-storey drift is a key parameter for meeting the objective of life safety under a seismic event. For 4-storey and 6-storey representative wood-frame buildings where only wood-based shearwalls are considered, results from both DRAIN-3D and SAPWood show that none of the maximum inter-storey drifts at any storey under any individual earthquake exceed the 2.5% inter-storey drift limit given in the building code. With DRAIN-3D, the average maximum inter-storey drifts are approximately 1.2% and 1.5% for 4-storey and 6-storey buildings designed with 2006 BCBC, respectively. For the NEESWood wood-frame building, none of the maximum inter-storey drifts at any storey under any individual earthquake exceed the 2.5% inter-storey drift limit for 4-storey building obtained from SAPWood and 6-storey building obtained from DRAIN-3D and SAPWood. For any 4-storey building analysed with DRAIN-3D, approximately half of the earthquakes resulted in the maximum inter-storey drifts greater than 2.5% inter-storey limit. This is partly due to the assumptions used in Drain-3D model in which the lumped mass at each storey is equally distributed to all the nodes of the floor. As a result, the total weight to counteract the uplift force at the ends of a wall would be much smaller than that anticipated in the design, thus causing hold-downs to yield and large uplift deformations to occur. Based on the analyses of a representative building and a redesigned NEESWood building situated in the city of Vancouver that subjected the structures to 20 earthquake records, 6-storey wood-frame building is expected to show similar or smaller inter-storey drift than a 4-storey wood-frame building, which is currently deemed acceptable under the current building code. Building construction - Design Building construction - Specfications Earthquakes, Effect on building construction
Online Access
Free
Resource Link
Less detail

Innovative Engineered Timber Building Systems for Non-Residential Applications, Utilising Timber Concrete Composite Flooring Capable of Spanning Up to 8 to 10m

https://research.thinkwood.com/en/permalink/catalogue1933
Year of Publication
2010
Topic
Market and Adoption
Design and Systems
Cost
Environmental Impact
Mechanical Properties
Material
Timber-Concrete Composite
Application
Floors
Frames

Preliminary Assessment of Hygrothermal Performance of Cross-Laminated Timber Wall Assemblies Using Hygrothermal Models

https://research.thinkwood.com/en/permalink/catalogue2628
Year of Publication
2010
Topic
Moisture
Design and Systems
Serviceability
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Author
Wang, J.
Baldracchi, P.
Organization
FPInnovations
Year of Publication
2010
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Topic
Moisture
Design and Systems
Serviceability
Keywords
Hygrothermal
Moisture Performance
Rainscreen
Language
English
Research Status
Complete
Summary
Preliminary simulation was carried out using hygIRC and WUFI, both 1-D hygrothermal models, to analyze moisture performance of rainscreened wood-frame walls and cross-laminated timber (CLT) walls for the climates in Vancouver and Calgary. The major results are as follows. In order to provide baseline knowledge, preliminary comparisons between hygIRC and WUFI were conducted to investigate the effects of climate data, wall orientations and rain intrusion on the performance of the rainscreened wood-frame walls based on Vancouver’s climate. hygIRC tended to produce almost constant moisture content (MC) of the plywood sheathing throughout a year but WUFI showed greater variations, particularly when the ventilation of the rainscreen cavity was neglected. Rainscreen cavity ventilation provided dramatic drying potentials for wall assemblies based on the WUFI simulation. hygIRC indicated that east-facing walls had the highest moisture load, but the differences between orientations seemed negligible in WUFI when the rainscreen cavity ventilation was taken into account. When 1% of wind-driven rain was simulated as an additional moisture load, hygIRC suggested that the rainscreen walls could not dry out in Vancouver, WUFI, however, indicated that they could dry to a safe MC level in the summer. The discrepancies in material property data between the two models and between different databases in WUFI (even for the same wood species) were found to be very large. In terms of wood sorption data, large differences existed at near-saturated RH levels. This is a result of using pressure-plate/membrane methods for measuring material equilibrium moisture content (EMC) under high RH conditions. The EMC of wood at near-100% RH conditions measured with these methods can be higher than 200%, suggesting wood in construction would decay without liquid water intrusion or severe vapour condensation. The pressure-plate/membrane methods also appeared to be highly species-dependent, and have higher EMC at a certain RH level for less permeable species, from which it is relatively difficult to remove water during the measurement. The hygrothermal simulation in this work suggested that such a species bias caused by testing methods could put impermeable species (most Canadian species) at a disadvantage to permeable species like southern pine during related durability design of building assemblies. In terms of using CLT for construction in Vancouver and Calgary, the WUFI simulations suggested that the use of less permeable materials such as EPS (expanded polystyrene insulation), XPS (extruded polystyrene insulation), self-adhered bituminous membrane and polyethylene in wall assemblies reduced the ability of the walls to dry. On the other hand, permeable assemblies such as those using relatively permeable insulation like semi-rigid mineral wool (rock wool) as exterior insulation, instead of less permeable exterior insulation materials, would help walls dry. The simulation also suggested that using CLT products with initially low MC would significantly reduce moisture-related risks, which indicated the importance of protecting CLT and avoiding wetting during transportation and construction. In addition, the simulation found that indoor relative humidity (RH) conditions generated by the indoor RH prediction models included in hygIRC and WUFI varied greatly under the same basic climate and building conditions. The intermediate method specified in ASHRAE Standard 160 P resulted in long periods of saturated RH conditions throughout a year for the Vancouver climate, which may not be representative of ordinary residential buildings in Vancouver. The simulation in this study is preliminary and exploratory. It would be arbitrary to recommend one model over the other based on this report or use the simulation results directly for CLT wall assembly design without consultation with building science specialists. However, this work revealed more opportunities for close collaborations between the wood science and the building science communities. More work should be carried out to develop appropriate testing methods and assemble material property data for hygrothermal simulation of wood-based building assemblies. Model improvement and field verification are also strongly recommended, particularly for new building systems such as CLT constructions.
Online Access
Free
Resource Link
Less detail

Manufacturing Cross-Laminated Timber (CLT): Technological and Economic Analysis

https://research.thinkwood.com/en/permalink/catalogue2636
Year of Publication
2010
Topic
Cost
Design and Systems
Material
CLT (Cross-Laminated Timber)
Author
Julien, F.
Organization
FPInnovations
Year of Publication
2010
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Cost
Design and Systems
Keywords
Manufacturing
Economic Analysis
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Cost, Time and Environmental Impacts of the Construction of the New NMIT Arts and Media Building

https://research.thinkwood.com/en/permalink/catalogue251
Year of Publication
2011
Topic
Cost
Design and Systems
Energy Performance
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
John, Stephen
Mulligan, Kerry
Perez, Nicolas
Love, Simon
Page, Ian
Organization
University of Canterbury
Year of Publication
2011
Country of Publication
New Zealand
Format
Report
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Cost
Design and Systems
Energy Performance
Keywords
Life Cycle Cost Study
Language
English
Research Status
Complete
Summary
This report was produced by the University of Canterbury for the Ministry of Agriculture and Forestry under Expression of Interest MAF POL 0910-11665. The report covers extensive research carried out on the construction of the new Arts and Media building at Nelson Marlborough Institute of Technology in Nelson, New Zealand, between March 2010 and June 2011. The collaborative research programme was directed by the Department of Civil and Natural Resources Engineering at the University of Canterbury (UC), Christchurch. Major contributions to the research programme were made by third-party industry consultants and reported in separate documents – a copy of all the original reports is included in the Appendices ; ScionResearch - Carbon and Energy Footprint of a new three storey building at Nelson Marlborough Institute of Technology (NMIT), Simon Love (2011); BRANZ (Building Research Association of New Zealand) - Nelson-Marlborough Institute of Technology Arts Building – An assessement of life cycle costs for alternative designs (BRANZ report E568), Ian Page (2010); Aurecon Group and ISJ Architects (working together) – NMIT Alternative Structural Design; Ref. 210688-001 (August, 2010).
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.