Skip header and navigation

4 records – page 1 of 1.

Timber Structures 3.0 - New Technology for Multi-Axial, Slim, High Performance Timber Structures

https://research.thinkwood.com/en/permalink/catalogue1557
Year of Publication
2016
Topic
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Zöllig, Stefan
Frangi, Andrea
Franke, Steffen
Muster, Marcel
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Mechanical Properties
Design and Systems
Keywords
Butt-Joint
Biaxial Load Bearing
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1290-1297
Summary
Until today, all known timber building systems allow only slabs with a uniaxial load bearing action. Thereby, in comparison to normal reinforced concrete slabs, timber slabs are often thick, expensive and complicated to build. The reason for this is that there is no efficient connection technology to rigidly connect timber slab elements to each other. Alternative solutions are hybrid structural systems with concrete or steel, however, this combination of materials results in some disadvantages especially in terms of weight, ecology, construction time and costs. In the framework of a large research project a new timber slab system has been developed and already tested in first real applications. The developed slab system is designed for housing, commercial and industrial buildings. The slab system works as a flat slab carrying vertical loads biaxial and consists of timber slab elements like CLT glued together on site with a high performance butt-joint bonding technology. Research about the central slab element, the butt-joint bonding and fire tests have already been performed. The research showed the feasibility of this innovation. In 2015 a first prototype was built in Thun, Switzerland. A large three year research project started 2016 with the goal to reach market maturity.
Online Access
Free
Resource Link
Less detail

Lateral Resistance of Cross-Laminated Timber Panel-to-Panel Connections

https://research.thinkwood.com/en/permalink/catalogue1724
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Richardson, Benjamin
Hindman, Daniel
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Mechanical Properties
Keywords
Strength
Stiffness
Panel-to-Panel
Monotonic Loading
Cyclic Loading
Half-Lap
Butt-Joint
Steel Plate
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4655-4662
Summary
Cross laminated timber (CLT) connections in shearwalls require an understanding of the shear strength and stiffness of panel-to-panel connections within the wall. This research measures the strength and stiffness of three different panel-to-panel CLT connections considering both monotonic and cyclic loading. Connections included a laminated veneer lumber (LVL) spline, a half-lap connection and a butt joint with overlapping steel plate. All connections were ductile in nature. The butt joint with steel plate demonstrated the highest connection strength of the connections tested. The cyclic stiffness of the laminated veneer lumber spline was less than the monotonic stiffness, while the halflap joint experienced a sharp drop in load after ultimate load was achieved. Full details of the monotonic and cyclic behaviour will be discussed, including load, stiffness and ductility terms.
Online Access
Free
Resource Link
Less detail

Simple Cross-Laminated Timber Shear Connections with Spatially Arranged Screws

https://research.thinkwood.com/en/permalink/catalogue1716
Year of Publication
2018
Topic
Connections
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)
Author
Loss, Cristiano
Hossain, Afrin
Tannert, Thomas
Publisher
ScienceDirect
Year of Publication
2018
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Mechanical Properties
Design and Systems
Keywords
Self-Tapping Screws
Butt-Joint
Quasi-Static
Monotonic Loading
Reverse Cyclic Loading
Yield Load
Load Carrying Capacity
Slips
Elastic Stiffness
Ductility
Energy Dissipation
Strength
Angle
Model
Language
English
Research Status
Complete
Series
Engineering Structures
Summary
This paper presents an experimental study to evaluate the use of spatially arranged self-tapping screws (STS) as shear connections for cross-laminated timber panels. Specifically, simple butt joints combined with crossed STS with different inclinations were investigated under quasi-static monotonic and reversed-cyclic loadings. The influence of the number and angle of insertion of screws, screws characteristics, friction and loading on the joint performance was explored. The yield load, load-carrying capacity and related slips, elastic stiffness, and ductility were evaluated considering two groups of tests performed on a total of 63 specimens of different size. Performance of connections with respect to the energy dissipation and loss of strength under cyclic loads was also investigated. It was shown that the spatial insertion angle of screws plays a key role in the performance of joints, not only because it relates to the shank to grain angle, but also because it affects the amount of wood involved in the bearing mechanism. Design models of STS connections are presented and discussed, and the test results are compared against analytical predictions. While good agreement for load-carrying capacity was obtained, the existing stiffness model seems less adequate with a consistent overestimation.
Online Access
Free
Resource Link
Less detail

Butt-Joint Bonding of Timber as a Key Technology for Point-Supported, Biaxial Load Bearing Flat Slabs Made of Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2466
Year of Publication
2019
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
Author
Zöllig, Stefan
Muster, Marcel
Themessl, Adam
Publisher
IOP Publishing Ltd
Year of Publication
2019
Country of Publication
United Kingdom
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Connections
Keywords
Butt-Joint
Bending Strength
Shear Resistance
Language
English
Research Status
Complete
Series
IOP Conference Series: Earth and Environmental Science
Online Access
Free
Resource Link
Less detail