Skip header and navigation

Refine Results By

616 records – page 1 of 62.

Systems in Timber Engineering: Loadbearing Structures and Component Layers

https://research.thinkwood.com/en/permalink/catalogue2115
Year of Publication
2008
Topic
Design and Systems
Application
Wood Building Systems
Author
Kolb, Josef
Editor
Lignum - Holzwirtschaft Schweiz
DGfH - German Society of Wood Research
Publisher
Birkhäuser Basel
Year of Publication
2008
Country of Publication
Germany
Format
Book
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Load Bearing
Construction
Timber Construction
Timber Preservation
Building Systems
Loadbearing Structure
Language
English
Research Status
Complete
ISBN
978-3-7643-8689-4
ISSN
978-3-7643-8690-0
Summary
Timber construction has become completely modernized. It has gained considerably in market share with respect to competing building materials and is dominated by systems such as frame and solid timber construction. Every timber construction is determined by its structure. Hence it is essential to know the connections and relationships from the design stage right through to the construction phase. Systems in Timber Engineering takes a whole new approach to this subject. It is a comprehensive, analytical, and visually organized treatment, from the simple single-family house to the large-scale multistore structure. It includes the building envelope, which is so important for saving energy, and systems for ceilings and interior dividing walls, which are so essential from the vantage point of construction. This work uses plans, schematic drawings, and pictures to show the current and forward-looking state of the technology as applied in Switzerland, a leading country in the field of timber construction.
Online Access
Payment Required
Resource Link
Less detail

Non Destructive Evaluation of Elastic Material Properties of Cross-Laminated Timber (CLT)

https://research.thinkwood.com/en/permalink/catalogue2315
Year of Publication
2008
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

New Applications of Timber in Non-Traditional Market Segments, High Rise Residential and Non-Residential (Commercial) Buildings

https://research.thinkwood.com/en/permalink/catalogue1934
Year of Publication
2009
Topic
Market and Adoption
Application
Wood Building Systems

Seismic Performance of 6-Storey Wood-Frame Buildings: Final Report

https://research.thinkwood.com/en/permalink/catalogue2638
Year of Publication
2009
Topic
Seismic
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Ni, Chun
Popovski, Marjan
Organization
FPInnovations
Year of Publication
2009
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Seismic
Keywords
Mid-Rise
Residential
Building Code
Language
English
Research Status
Complete
Summary
spIn this report, the seismic performance of 6-storey wood frame residential buildings is studied. Two building configurations, a typical wood-frame residential building and a building to be tested under the NEESWood project, were studied. For each building configuration, a four-storey building and a six-storey building were designed to the current (pre-April 6, 2009) 2006 BC Building Code (BCBC) and to the anticipated new requirements in the 2010 National Building Code of Canada (NBCC), resulting in four buildings with different designs. The four-storey building designed to the current 2006 BC Building Code served as the benchmark building representing the performance of current permissible structures with common architectural layouts. In the design of both four-storey and six-storey buildings, it was assumed that the buildings are located in Vancouver on a site with soil class C. Instead of using the code formula, the fundamental natural period of the buildings was determined based on the actual mass and stiffness of wood-based shearwalls. The base shear and inter-storey drift are determined in accordance with Clauses 4.1.8.11.(3)(d)(iii) and 4.1.8.11.(3)(d)(iv) of BCBC, respectively. Computer programs DRAIN 3-D and SAPWood were used to evaluate the seismic performance of the buildings. A series of 20 different earthquake records, 14 of the crustal type and 6 of the subcrustal type, were provided by the Earthquake Engineering Research Facility of the University of British Columbia and used in the evaluation. The records were chosen to fit the 2005 NBCC mean PSA and PSV spectra for the city of Vancouver. For representative buildings designed in accordance with 2006 BCBC, seismic performance with and without gypsum wall board (GWB) is studied. For representative buildings designed in accordance with the 2010 NBCC, the seismic performance with GWB is studied. For the NEESWood building redesigned in accordance with 2010 NBCC, seismic performance without GWB is studied. Ignoring the contribution of GWB would result in a conservative estimate of the seismic performance of the building. In the 2006 BCBC and 2010 NBCC, the inter-storey drift limit is set at 2.5 % of the storey height for the very rare earthquake event (1 in 2475 year return period). Limiting inter-storey drift is a key parameter for meeting the objective of life safety under a seismic event. For 4-storey and 6-storey representative wood-frame buildings where only wood-based shearwalls are considered, results from both DRAIN-3D and SAPWood show that none of the maximum inter-storey drifts at any storey under any individual earthquake exceed the 2.5% inter-storey drift limit given in the building code. With DRAIN-3D, the average maximum inter-storey drifts are approximately 1.2% and 1.5% for 4-storey and 6-storey buildings designed with 2006 BCBC, respectively. For the NEESWood wood-frame building, none of the maximum inter-storey drifts at any storey under any individual earthquake exceed the 2.5% inter-storey drift limit for 4-storey building obtained from SAPWood and 6-storey building obtained from DRAIN-3D and SAPWood. For any 4-storey building analysed with DRAIN-3D, approximately half of the earthquakes resulted in the maximum inter-storey drifts greater than 2.5% inter-storey limit. This is partly due to the assumptions used in Drain-3D model in which the lumped mass at each storey is equally distributed to all the nodes of the floor. As a result, the total weight to counteract the uplift force at the ends of a wall would be much smaller than that anticipated in the design, thus causing hold-downs to yield and large uplift deformations to occur. Based on the analyses of a representative building and a redesigned NEESWood building situated in the city of Vancouver that subjected the structures to 20 earthquake records, 6-storey wood-frame building is expected to show similar or smaller inter-storey drift than a 4-storey wood-frame building, which is currently deemed acceptable under the current building code. Building construction - Design Building construction - Specfications Earthquakes, Effect on building construction
Online Access
Free
Resource Link
Less detail

Review and Survey on Differential Movement in Wood Frame Construction

https://research.thinkwood.com/en/permalink/catalogue2627
Year of Publication
2010
Topic
Design and Systems
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Wang, J.
Ni, Chun
Organization
FPInnovations
Year of Publication
2010
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Deformation
Mid-Rise
Shrinkage
Movement
Language
English
Research Status
Complete
Summary
This report summarizes the existing knowledge on building movement related to wood-frame construction. This knowledge includes fundamental causes and characteristics of wood shrinkage, instantaneous and time-dependent deformations under load, major wood-based materials used for construction and their shrinkage characteristics, movement amounts in publications based on limited field measurement, and movement estimations by construction practitioners based on their experience with wood-frame construction. Movement analysis and calculations were also demonstrated by focusing on wood shrinkage based on common engineering design assumptions, using six-storey platform buildings as examples. The report then provides engineering solutions for key building locations where differential movement could occur, based on the literature review as well as a small-scale survey of the construction industry. The report emphasizes the importance of comprehensive analysis during design and construction to accommodate differential movement. Most building materials move when subjected to loading or when environmental conditions change. It is always good practice to detail buildings so that they can accommodate a certain range of movement, whether due to structural loading, moisture or temperature changes. For wood-frame buildings, movement can be reduced by specifying materials with lower shrinkage rates, such as engineered wood products and drier lumber. However, this may add considerable costs to building projects, especially when specifications have to be met through customized orders. Producing lumber with a lower moisture content adds significant costs, given the additional energy consumption, lumber degrade and sorting requirements during kiln drying. Specifying materials with lower moisture content at time of delivery to job site does not guarantee that wood will not get wet during construction, and excessive shrinkage could still be caused by excessively long time of exposure to rain during construction. On the other hand, effective drying can occur during the period between lumber delivery and lumber closed into building assemblies. Appropriate measures should be taken to ensure lumber protection against wetting, protected panel fabrication on site, good construction sequence to facilitate air drying, and supplementary heating before closing in to improve wood drying. This report also provides recommendations for future work, including field measurement of movement and construction sequencing optimization, in order to provide better information for the design and construction of wood buildings, five- and six-storey platform frame buildings in particular.
Online Access
Free
Resource Link
Less detail

Cost, Time and Environmental Impacts of the Construction of the New NMIT Arts and Media Building

https://research.thinkwood.com/en/permalink/catalogue251
Year of Publication
2011
Topic
Cost
Design and Systems
Energy Performance
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems

Wind-Induced Vibration of Tall Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue1105
Year of Publication
2011
Topic
Wind
Connections
Material
Glulam (Glue-Laminated Timber)
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Characteristics of the Radio-Frequency/Vacuum Drying of Heavy Timbers for Post and Beam of Korean Style Housings Part II: For Korean Red Pine Heavy Timbers with 250 × 250 mm, 300 × 300 mm in Cross Section and 300 mm in Diameter, and 3,600 mm in Length

https://research.thinkwood.com/en/permalink/catalogue1508
Year of Publication
2011
Topic
Moisture
Material
Solid-sawn Heavy Timber
Application
Wood Building Systems
Author
Lee, Nam-Ho
Zhao, Xue-Feng
Shin, Ik-Hyun
Park, Moon-Jae
Park, Jung-Hwan
Park, Joo-Saeng
Publisher
The Korean Society of Wood Science Technology
Year of Publication
2011
Country of Publication
Korea
Format
Journal Article
Material
Solid-sawn Heavy Timber
Application
Wood Building Systems
Topic
Moisture
Keywords
Radio-Frequency/Vacuum Drying
Moisture Gradient
Shrinkage
Case Hardening
Surface Checks
Compressive Load
Language
Korean
Research Status
Complete
Series
Journal of the Korean Wood Science and Technology
Online Access
Free
Resource Link
Less detail

Accommodating Movement in High-Rise Wood-Frame Building Construction

https://research.thinkwood.com/en/permalink/catalogue1875
Year of Publication
2011
Topic
Design and Systems
Connections
Material
Steel-Timber Composite
Other Materials
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Floors
Walls

Displacement-Based Seismic Design of Timber Structures

https://research.thinkwood.com/en/permalink/catalogue1891
Year of Publication
2011
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Other Materials
Application
Wood Building Systems
Walls
Floors
Beams
Columns
Frames

616 records – page 1 of 62.