Skip header and navigation

50 records – page 1 of 5.

Strengthening of Full-Scale Laminated Veneer Lumber Beams with CFRP Sheets

https://research.thinkwood.com/en/permalink/catalogue3212
Year of Publication
2022
Topic
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Application
Beams
Author
Bakalarz, Michal Marcin
Kossakowski, Pawel Grzegorz
Organization
Kielce University of Technology
Editor
Marcello, Angelo
Benzarti, Karim
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Application
Beams
Topic
Mechanical Properties
Keywords
Composites
Carbon Fiber
Load-Bearing Capacity
Reinforcement
Stiffness
Research Status
Complete
Series
Materials
Summary
This paper presents the results of experimental research on full-size laminated veneer lumber (LVL) beams unreinforced and reinforced with CFRP sheets. The nominal dimensions of the tested beams were 45 mm × 200 mm × 3400 mm. The beams were reinforced using the so-called U-type reinforcement in three configurations, differing from each other in the thickness of the reinforcement and the side surface coverage. An epoxy resin adhesive was used to bond all the components together. A four-point static bending test was performed according to the guidelines in the relevant European standards. The effectiveness of the reinforcement increased with the level of coverage of the side surface and the level of reinforcement. The average increases of bending resistance were 42%, 51% and 58% for configurations B, C and D, respectively. The average value of bending stiffness increased for the beams of series B, C and D by 15%, 31% and 43%, respectively. Their failure mode changed from brittle fracture initiated in the tensile zone for unreinforced beams to more ductile fracture, initiated in the compression zone. The influence of the coverage of the side surface by the CFRP sheet and reinforcement ratio on the mechanism of failure and effectiveness of strengthening was studied in the article.
Online Access
Free
Resource Link
Less detail

Experimental Analysis of Passively and Actively Reinforced Glued-laminated Timber with Focus on Ductility

https://research.thinkwood.com/en/permalink/catalogue2823
Year of Publication
2021
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Livas, Charalampos
Ekevad, Mats
Öhman, Micael
Organization
Luleå University of Technology
Publisher
Taylor&Francis Online
Year of Publication
2021
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Reinforcement
Ductility
Bending Test
Steel
Research Status
Complete
Series
Wood Material Science & Engineering
Summary
When glued-laminated timber are subjected to bending moment, they usually fail in a brittle way in the tension zone before the compressive zone reaches the compressive strength of wood. This means that the compression strength of wood is not fully exploited. By reinforcing the tension zone, the failure mode of glued-laminated timber can be changed from tensile to compressive. As a result, by utilizing the higher compressive strength, reinforced glued-laminated timber become stronger and the failure mode becomes compressive and ductile. This paper presents experimental results of the effect of steel reinforcements in the tension zone of glued-laminated timber. Four passively reinforced beams, four actively reinforced beams, and seven unreinforced beams were tested to failure in four-point bending tests. The experimental results confirmed the brittle tension failure in the unreinforced beams as well as the ductile and compressive failure in the reinforced beams. Furthermore, the experiments revealed the increase of the passively and the actively reinforced glued-laminated timber relative to the reference beams for strengths (26% and 39%) and stiffnesses (30% and 11%). Ductilities were increased from 7.7% for the reference beams to 90% and 75% for the passively and the actively reinforced glued-laminated timber, respectively.
Online Access
Free
Resource Link
Less detail

Cross Laminated Timber under Concentrated Compression Loads - Methods of Reinforcement

https://research.thinkwood.com/en/permalink/catalogue2932
Year of Publication
2021
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Maurer, Bernhard
Maderebner, Roland
Organization
University of Innsbruck
Publisher
Elsevier
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Mechanical Properties
Keywords
Multi-storey Buildings
Point-supported Flat Slabs
Reinforcement
System Connector
SPIDER Connector
Punching Test
Research Status
Complete
Series
Engineering Structures
Summary
Point-supported flat slabs made of cross laminated timber (CLT) for multi-storey buildings pose various challenges to structural timber design. One aspect are concentrated compressive loads, which cause stress concentrations in the form of shear and compression perpendicular to the grain at the point supports. The present work deals with this problem and shows a method, how the support area can be reinforced with a system connector. After a specification of the connector, the functionality of this construction element is described on the basis of experimental, numerical and analytical studies for a symmetrical loading. The interaction of the connector with the (CLT) is presented with an anlaytical model and numerical simulations, and evaluated with mechanical tests.
Online Access
Free
Resource Link
Less detail

Flexural Strengthening of Composite Bridge Glued Laminated Timber Beams-Concrete Plate Using CFRP Layers

https://research.thinkwood.com/en/permalink/catalogue2587
Year of Publication
2020
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Author
Mujiman, M
Igustiany, F
Hakiki, R
Publisher
IOP Publishing Ltd
Year of Publication
2020
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Topic
Design and Systems
Keywords
CFRP
Carbon Fiber Reinforced Polymer
Flexural Strength
Stiffness
Ductility
Reinforcement
Research Status
Complete
Series
IOP Conference Series: Materials Science and Engineering
Summary
The timber bridge design although economical, often has difficulty producing enough rigidity so that a solution is needed to solve it. The use of CFRP (Carbon Fiber Reinforced Polymer) as a reinforcement of structural elements if properly designed and implemented can produce an effective and efficient composite structure. The experimental study aims to analyse the strength, stiffness and ductility of flexural strengthening composite bridge glued laminated timber beams-concrete plates using CFRP layers. The dimensions of the composite glued laminated timber beams 100/180 mm and concrete plate 75/300 mm with a length of 2,480 mm. The number of specimens is 3 composite glued laminated timber beams-concrete plate consisting of 1 test beam without CFRP reinforcement, 1 test beam with one layer CFRP reinforcement, and 1 test beam with three layer CFRP reinforcement. Experimental testing of flexural loads is done with two load points where each load is placed at 1/3 span length. The test results show that the strength of composite laminated timber beams glued - concrete plates BN; BL-1; BL-2 in a row 81.32; 82.82; 82.69 kN/mm; stiffness in a row 7.51; 8.22; 6.32 kN/mm and successive ductility of 16.67; 28.83; 20.21.
Online Access
Free
Resource Link
Less detail

Deformability of Glued Laminated Beams with Combined Reinforcement

https://research.thinkwood.com/en/permalink/catalogue2835
Year of Publication
2020
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Sobczak-Piastka, Justyna
Gomon, S. Svyatoslav
Polishchuk, Mykola
Homon, Sviatoslav
Gomon, Petro
Karavan, Victor
Organization
UTP University of Science and Technology
Publisher
MDPI
Year of Publication
2020
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Reinforcement
Bending Behaviour
Research Status
Complete
Series
Buildings
Summary
Wood is one of the most popular renewable natural materials. Nowadays, raw wood is hardly ever used in the construction industry. It has been substituted by glued laminated wood that is processed with the use of high-tech methods, thus eliminating the principal flaws and defects of the natural material. The deformability of glued laminated beams with combined reinforcement has been studied, under which the steel reinforcement of the periodic profile was placed in the dappings of the upper compressed zone, while ribbon-reinforced composite was glued to the bottom of the stretched zone. The graphical charts for the layer change of the deformations of wood, steel, and composite reinforcement from the beginning of the loading application to the moment of destruction are presented.
Online Access
Free
Resource Link
Less detail

Experimental Investigation of Cracked End-notched Glulam Beams Repaired with GFRP Bars

https://research.thinkwood.com/en/permalink/catalogue2444
Year of Publication
2019
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams

Effectiveness of Reinforcing Bent Non-Uniform Pre-Stressed Glulam Beams with Basalt Fibre Reinforced Polymers Rods

https://research.thinkwood.com/en/permalink/catalogue2464
Year of Publication
2019
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams

A Novel LVL- Based Internal Reinforcement for Holes in Glulam Beams

https://research.thinkwood.com/en/permalink/catalogue1908
Year of Publication
2018
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Beams
Author
Tapia, Cristóbal
Aicher, Simon
Year of Publication
2018
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Beams
Topic
Mechanical Properties
Keywords
Hybrid Build Up
Parametric Study
Finite Element Method (FEM)
Reinforcement
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 20-23,2018. Seoul, Republic of Korea
Summary
A newly developed reinforcement system for glulam, actually representing a new generic wood com-pund, is presented. The composite consists on a hybrid cross-section, composed of intercalated layers of GLT and LVL, glued together along the width-direction of the beam. The specific build-up improves in first instance the mechanical properties of the glulam in the direction perpendicular to the grain significantly. Hence, the composite is especially well suited for the reinforcement of arrays of large holes in wide cross-sections. Secondly, the layers were tailored in such a manner, that the bending load capacity equalls that of the gross-cross-section. A parametric study was performed by means of the finite element method, to study the redistribution of stresses perpendicular to the main axis of the beam in the region of stress concentrations at one of the hole corners. Specifically, the load sharing of the vertical tensile force F_t,90 described in the German National Annex to EC5 was analyzed, and an analytical relationship depending on the thickness, elastic modulus and moment-to-shear-force ratio was developed.
Online Access
Free
Resource Link
Less detail

Application of Ductile Yield Link in Glulam Moment Connections

https://research.thinkwood.com/en/permalink/catalogue2313
Year of Publication
2018
Topic
Connections
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Columns
Beams

Glued Laminated Timber Beams Reinforced With Sisal Fibres

https://research.thinkwood.com/en/permalink/catalogue2436
Year of Publication
2018
Topic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams

50 records – page 1 of 5.