Skip header and navigation

45 records – page 1 of 5.

Pinching Effect on Seismic Performance of a SDOF Lightframe Timber Structure

https://research.thinkwood.com/en/permalink/catalogue2542
Year of Publication
2021
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Shear Walls
Author
Eini, Ariya
Zhou, Lina
Ni, Chun
Year of Publication
2021
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Shear Walls
Topic
Seismic
Keywords
Pinching Behavior
Energy Dissipation
Hysteresis Loop
Light-frame wood
IDA Analysis
SDOF System
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Summary
Although energy dissipation is one of the key factors in resisting seismic force, current design codes only take into account the ductility of the backbone properties of hysteresis curves, and the energy dissipation is usually not accounted for. This paper focuses on understanding and assessing the influence of energy dissipation due to different pinching levels on the seismic performance of a light-frame wood shear wall system. Timber structures with identical backbone curves but different pinching levels were analyzed. Incremental dynamic analyses were run on a single-degreeof-freedom system with varying pinching stiffness and residual strength. The seismic evaluation is presented by the spectral accelerations causing failure of the structure and the hysteresis energy dissipation under a suite of 22 ground motions (2 components per motion) over a wide range of fundamental periods of typical timber structures. Results show that the effect of pinching on the seismic performance of timber structures is period-dependent. Short period structures are more sensitive to the pinching of hysteresis loops compared to long period structures. The residual strength of pinching loops has a greater influence on the seismic performance than the stiffness of the pinching loops. Hysteretic energy dissipation derived from standard reversed-cyclic tests can provide a better understanding on the seismic resistance of timber structures. However, the hysteretic energy under a seismic event at near-collapse stage neither agrees with quasistatic cyclic test’s energy dissipation nor is well correlated to the maximum seismic capacity of the structure.
Online Access
Free
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Structural Performance of Post-Tensioned CLT Shear Walls with Energy Dissipators

https://research.thinkwood.com/en/permalink/catalogue1472
Year of Publication
2018
Topic
Design and Systems
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Shear Walls
Author
Chen, Zhiyong
Popovski, Marjan
Symons, Paul
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Shear Walls
Topic
Design and Systems
Mechanical Properties
Seismic
Keywords
Compression Tests
Compression Strength
Energy Dissipation
Post-Tensioned
Pres-Lam
Monotonic Loading
Reverse Cyclic Loading
Language
English
Research Status
Complete
Summary
The latest developments in seismic design philosophy have been geared towards developing of so called "resilient" or "low damage" innovative structural systems that can reduce damage to the structure while offering the same or higher levels of safety to occupants. One such innovative structural system is the Pres-Lam system that is a wood-hybrid system that utilizes post-tensioned (PT) mass timber components in both rigid-frame and wall-based buildings along with various types of energy disspators. To help implement the Pres-Lam system in Canada and the US, information about the system performance made with North American engineered wood products is needed. That information can later be used to develop design guidelines for the designers for wider acceptance of the system by the design community.Several components influence the performance of the Pres-Lam systems: the load-deformation properties of the engineered wood products under compression, load-deformation and energy dissipation properties of the dissipators used, placement of the dissipators in the system, and the level of post-tensioning force. The influence of all these components on the performance of Pres-Lam wall systems under gravity and lateral loads was investigated in this research project. The research project consisted of two main parts: material tests and system tests.
Online Access
Free
Resource Link
Less detail

Cyclic Load Behaviour of Beam-to-Column Glulam Joints Combining Glued-in Rods with Steel Brackets

https://research.thinkwood.com/en/permalink/catalogue2028
Year of Publication
2018
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)

Experimental and Numerical Analysis of Flexible Polymer Connections for CLT Buildings

https://research.thinkwood.com/en/permalink/catalogue2057
Year of Publication
2018
Topic
Connections
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Experimental Investigation of Flexural Behavior of Glulam Beams Reinforced with Different Bonding Surface Materials

https://research.thinkwood.com/en/permalink/catalogue1312
Year of Publication
2018
Topic
Mechanical Properties
Connections
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Uzel, Murat
Togay, Abdullah
Anil, Özgür
Sögütlü, Cevdet
Publisher
ScienceDirect
Year of Publication
2018
Country of Publication
Netherlands
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Connections
Keywords
Epoxy
Polyurethane
Adhesives
Load-Displacement
Ultimate Load Capacity
Ductility
Stiffness
Energy Dissipation
Failure Mechanisms
Language
English
Research Status
Complete
Series
Construction and Building Materials
Summary
In this study, flexuralbehaviors of glue laminated timber beams manufactured from Pinussylvestristree were investigated by comparing the results with those of massive timber beams. The main variables considered in the study were number of laminations, types of adhesive materials and reinforcement nets used in the lamination surfaces. In scope of the experimental study, glue laminated beams with 5 and 3 lamination layers were manufactured with 90 x 90 mm beam sections. In the lamination process epoxy and polyurethane glue were used. Morever, in order to improve the bond strength at the lamination surface, aluminium, fiberglass and steel wire nets were used at the lamination surfaces. Load–displacement responses, ultimate capacities, ductility ratios, initial stiffness, energy dissipation capacities and failure mechanisms of glue laminated beams were compared with those of massive beams. It was observed that the general bending responses of glue laminated beams were better than those of massive beams. In addition to that the use of reinforcement nets at the lamination surfaces increased the ultimate load capacities of the tested beams. The highest ultimate load capacities were oberved from the tests of glue laminated beams manufactured using five laminated layers and retrofitted with polyurethane glue using steel wire reinforcement nets, in the direction normal to the lamination surface. Finally, the finite element simulations of some test specimens were performed to observe the accuracy of finite element technology in the estimation of ultimate capacities of glue laminated timber beams.
Online Access
Free
Resource Link
Less detail

In-Plane Strength and Stiffness of Cross-Laminated Timber Shear Walls

https://research.thinkwood.com/en/permalink/catalogue2180
Year of Publication
2018
Topic
Mechanical Properties
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls

Investigating the Hysteretic Behavior of Cross-Laminated Timber Wall Systems due to Connections

https://research.thinkwood.com/en/permalink/catalogue1230
Year of Publication
2018
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Izzi, Matteo
Polastri, Andrea
Fragiacomo, Massimo
Publisher
American Society of Civil Engineers
Year of Publication
2018
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Connections
Mechanical Properties
Keywords
Numerical Model
Mechanical Behavior
Failure Mechanisms
Anchoring
Joints
Load-Displacement
Energy Dissipation
Language
English
Research Status
Complete
Series
Journal of Structural Engineering
Summary
Cross-laminated timber (CLT) wall systems are composed of massive timber panels that are fastened together and to the horizontal elements (foundations or intermediate floors) with step joints and mechanical connections. Due to the high in-plane stiffness of CLT, the shear response of such systems depends strongly on the connections used. This paper proposes a numerical model capable of predicting the mechanical behavior and failure mechanisms of CLT wall systems. The wall and the element to which it is anchored are simulated using three-dimensional (3D) solid bodies, while the connections are modeled as nonlinear hysteretic springs. Typical racking tests of wall systems are reproduced by varying the assumptions used to schematize the behavior of the connections. Results are compared with test data published in the literature, and the differences are discussed. The influence of the boundary conditions (vertical load applied on top of the wall and friction at its base) and aspect ratio of the panel are investigated via a parametric numerical study. Finally, the performance of a wall system assembled with two CLT panels is analyzed, highlighting how the properties of the anchoring connections and vertical step joints affect the load-displacement response and energy dissipation.
Online Access
Free
Resource Link
Less detail

Seismic Design Options for Post-Tensioned Timber Walls

https://research.thinkwood.com/en/permalink/catalogue1853
Year of Publication
2018
Topic
Design and Systems
Seismic
Material
LVL (Laminated Veneer Lumber)
Application
Walls
Author
Iqbal, Asif
Pampanin, Stefano
Palermo, Alessandro
Buchanan, Andrew
Fragiacomo, Massimo
Publisher
New Zealand Timber Design Society
Year of Publication
2018
Country of Publication
New Zealand
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Application
Walls
Topic
Design and Systems
Seismic
Keywords
Earthquake
Post-Tensioned
Energy Dissipation
Multi-Storey
Language
English
Research Status
Complete
Series
New Zealand Timber Design Journal
Online Access
Free
Resource Link
Less detail

Shaking Table Testing of a Multi-Storey Post-Tensioned Glulam Building: Preliminary Experimental Results

https://research.thinkwood.com/en/permalink/catalogue1854
Year of Publication
2018
Topic
Seismic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Beams
Columns

Simple Cross-Laminated Timber Shear Connections with Spatially Arranged Screws

https://research.thinkwood.com/en/permalink/catalogue1716
Year of Publication
2018
Topic
Connections
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)
Author
Loss, Cristiano
Hossain, Afrin
Tannert, Thomas
Publisher
ScienceDirect
Year of Publication
2018
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Mechanical Properties
Design and Systems
Keywords
Self-Tapping Screws
Butt-Joint
Quasi-Static
Monotonic Loading
Reverse Cyclic Loading
Yield Load
Load Carrying Capacity
Slips
Elastic Stiffness
Ductility
Energy Dissipation
Strength
Angle
Model
Language
English
Research Status
Complete
Series
Engineering Structures
Summary
This paper presents an experimental study to evaluate the use of spatially arranged self-tapping screws (STS) as shear connections for cross-laminated timber panels. Specifically, simple butt joints combined with crossed STS with different inclinations were investigated under quasi-static monotonic and reversed-cyclic loadings. The influence of the number and angle of insertion of screws, screws characteristics, friction and loading on the joint performance was explored. The yield load, load-carrying capacity and related slips, elastic stiffness, and ductility were evaluated considering two groups of tests performed on a total of 63 specimens of different size. Performance of connections with respect to the energy dissipation and loss of strength under cyclic loads was also investigated. It was shown that the spatial insertion angle of screws plays a key role in the performance of joints, not only because it relates to the shank to grain angle, but also because it affects the amount of wood involved in the bearing mechanism. Design models of STS connections are presented and discussed, and the test results are compared against analytical predictions. While good agreement for load-carrying capacity was obtained, the existing stiffness model seems less adequate with a consistent overestimation.
Online Access
Free
Resource Link
Less detail

45 records – page 1 of 5.