North American building codes currently provide strict limits on height of wood structures, where for example, in Canada wood structures are limited to 4 or 5 storeys. This paper examines wood-steel hybrid system to increase seismic force resistance beyond current limits, up to 10 storeys. The use wood-steel hybrid systems allows for the combination of high strength and ductility of steel with high stiffness and light weight of timber. This paper examines one type o wood and steel hybrid system: a steel moment frame with infill crossed Laminated Timber (CLT) shear walls. A detailed non-linear model of a 2D wood-steel hybrid seismic force resisting system was completed for 6, and 9 storeys; with two different steel frame designs, and four different placements of the infill walls. The static pushover response of this type of hybrid seismic force resisting system (SFRS) has been completed and compared for all cases. The results indicate that preliminary values for ductility (Rd) and overstrength (Ro) for this type of system are 2.0 and 1.7, respectively, similar to a plain wood wall system. Low ductility frames benefit the most from the addition of CLT shear walls as they do not lose the ductility in the system.
The aim of this thesis is to study the load-carrying behaviour of dowel-type steel-to-timber connections in detail. This is achieved by performing experimental tests on single-dowel connections. A large variety of influencing parameters is assessed, which include wood density, connection width, the dowel roughness, and the application of reinforcements in order to prevent brittle behaviour. Separate stages in the loading history are identified, starting from an initial consolidation phase, the region of maximum stiffness during load increase, and the point of maximum connection strength.
The results of the experiments are compared to the design practice in Eurocode 5 for strength and stiffness estimation. Strength prediction is conservative except for slender connections, while stiffness prediction complied with experimental results only for connections of intermediate width.
In timber-concrete composite systems, timber and concrete are inherently brittle materials that behave linearly elastic in both tension and bending. However, the shear connection between the members can exhibit significant ductility. It is therefore possible to develop timber-concrete composite systems with ductile connection that behave in a ductile fashion. This study illustrates the use of an elastic-perfectly plastic analytical approach to this problem. In addition, the study proposes an incremental method for predicting the nonlinear load-deflection response of the composite system. The accuracy of the analytical model is confirmed with a computer model, and numerical solutions of the analytical model are compared to experimental results from the bending tests conducted by previous researchers. Reasonable agreement is found from the comparisons, which validates the capacity of the analytical model in predicting the structural behaviour of the timber-concrete composite systems in both elastic and post-elastic stages.
This paper deals with the seismic behaviour of timber-glass systems. A series of experiments was performed on the shaking table of the IZIIS institute in Skopje, Macedonia. One and two story full scale structures were subjected to a series of ground motions. All together 8 different setups were tested. The chosen combination of glass-timber walls exhibited a rocking type of behaviour, resulting in a desirable ductile failure of steel hold-downs and not brittle failure of the glazing or the timber frame.
Three innovative massive wooden shear-wall systems (Cross-Laminated-Glued Wall, Cross-Laminated-Stapled Wall, Layered Wall with dovetail inserts) were tested and their structural behaviour under seismic action was assessed with numerical simulations. The wall specimens differ mainly in the method used to assemble the layers of timber boards composing them. Quasi-static cyclic loading tests were carried out and then reproduced with a non-linear numerical model calibrated on the test results to estimate the most appropriate behaviour factor for each system. Non-linear dynamic simulations of 15 artificially generated seismic shocks showed that these systems have good dissipative capacity when correctly designed and that they can be assigned to the medium ductility class of Eurocode 8. This work also shows the influence of deformations in wooden panels and base connectors on the behaviour factor and dissipative capacity of the system.
Although the benefits of using timber in mid- and high-rise construction are undisputed, there are perceived shortcomings with respect to the ductility needed to provide seismic resistance and a corresponding lack of appropriate design guidance. Overcoming these perceived shortcomings will allow timber, and its wood product derivatives, to further expand into the multi-storey construction sector, also in the context of hybrid structures that integrate different materials. The “Finding the Forest Through the Trees” (FFTT) system is a new hybrid system for high rise structures which combines the advantages of timber and steel as building materials. This paper presents research utilizing finite element models to capture the seismic response of the FFTT system and help developing design guidance. From the results presented herein, it appears that the FFTT system can meet the design performance requirements required for seismic loading: inter-storey drifts were lower than required and local plastic deformations were within a reasonable range for life safety performance.
Second European Conference on Earthquake Engineering and Seismology
Research Status
Complete
Notes
August 25-29, 2014, Istanbul, Turkey
Summary
Cross-laminated timber (CLT) as a structural system has not been fully introduced in European or North American building codes. One of the most important issues for designers of CLT structures in earthquake prone regions when equivalent static design procedure is used, are the values for the force modification factors (R-factors) for this structural system. Consequently, the objective of this study was to derive suitable ductility-based force modification factors (Rd-factors) for seismic design of CLT buildings for the National Building Code of Canada (NBCC). For that purpose, the six-storey NEESWood Capstone wood-frame building was redesigned as a CLT structure and was used as a reference symmetrical structure for the analyses. The same floor plan was used to develop models for ten and fifteen storey buildings. Non-linear analytical models of the buildings designed with different Rd-factors were developed using the SAPWood computer program. CLT walls were modelled using the output from mechanics models developed in Matlab that were verified against CLT wall tests conducted at FPInnovations. Two design methodologies for determining the CLT wall design resistance (to include and exclude the influence of the hold-downs), were used. To study the effects of fastener behaviour on the R-factors, three different fasteners (16d nails, 4x70mm and 5x90mm screws) used to connect the CLT walls, were used in the analyses. Each of the 3-D building models was subjected to a series of 22 bi-axial input earthquake motions suggested in the FEMA P-695 procedure. Based on the results, the fragility curves were developed for the analysed buildings. Results showed that an Rd-factor of 2.0 is appropriate conservative estimate for the symmetrical CLT buildings studied, for the chosen level of seismic performance.
The joints are very important structural element in timber framed structures. The purpose of this study is to develop the high-strength and high-ductility beam-column joint for timber structure. In this study, steel plate fastened with drift pins and paste the ultraviolet-ray hardening Fiber Reinforced Plastics (FRP) on the surface of the member section. The wood is the anisotropic material of which the strength characteristic greatly differs according to the direction of the fiber. The strength of the fiber direction is high, but the strength of the fiber orthogonal direction is low. Also, the splitting failure is caused in the fiber orthogonal direction, and there is a case in which strength and toughness extremely lower. It is necessary to consider the weak point of such woody material for the case in which the wood is used as a structural element for timber framed structure. It is very important to be ensured the earthquake-proof safety of the building, and prevent a building collapse for the great earthquake. This study reinforces weak point on the strength of woody material by using the ultraviolet-ray hardening FRP. Then, timber framed joint of the high-strength and high ductility is developed as a structural element. In this study, the verification experiment is carried out for the joint element specimens of the large section wood.
April 3-5, 2014, Boston, Massachusetts, United States
Summary
Cross-laminated timber (CLT) is widely perceived as the most promising option for building high-rise wood structures due to its structural robustness and good fire resistance. While gravity load design of a tall CLT building is relatively easy to address because all CLT walls can be utilized as bearing walls, design for significant lateral loads (earthquake and wind) can be challenging due to the lack of ductility in current CLT construction methods that utilize wall panels with low aspect ratios (height to length). Keeping the wall panels at high aspect ratios can provide a more ductile response, but it will inevitably increase the material and labor costs associated with the structure. In this study, a solution to this dilemma is proposed by introducing damping and elastic restoring devices in a multi-story CLT building to achieve ductile response, while keeping the integrity of low aspect ratio walls to reduce the cost of construction and improve fire resistance. The design methodology for incorporating the response modification devices is proposed and the performance of the as-designed structure under seismic is evaluated.
The high performance in-plane of cross laminated timber (CLT) panels has created a potential for the use of CLT members act as diaphragms in steel structures. The behaviour of this diaphragm system depends strongly on the connections involved in linking the panels together and to the steel members. A study of the connections at both locations was made using experimental testing of two connection designs for the panel-to-panel case, and the development of a staggered lag screw connection for the panel-to-steel beam case. The results showed good performance for the double spline and fully-threaded inclined screws panel-to-panel connections. The lag screw connection showed high strength, stiffness, and ductility. The CSA Standard O86-09 was found to best predict the strength of both types of connections. Characteristic design stiffness values were presented for the stiffness at low levels of displacement and the initial, elastic stiffness.