Skip header and navigation

44 records – page 1 of 5.

Analysis of the Timber-Concrete Composite Systems with Ductile Connection

https://research.thinkwood.com/en/permalink/catalogue113
Year of Publication
2013
Topic
Mechanical Properties
Material
Timber-Concrete Composite
Author
Zhang, Chao
Organization
University of Toronto
Year of Publication
2013
Format
Thesis
Material
Timber-Concrete Composite
Topic
Mechanical Properties
Keywords
Bending
Ductility
Model
Load Deflection
Tension
Shear Connection
Research Status
Complete
Summary
In timber-concrete composite systems, timber and concrete are inherently brittle materials that behave linearly elastic in both tension and bending. However, the shear connection between the members can exhibit significant ductility. It is therefore possible to develop timber-concrete composite systems with ductile connection that behave in a ductile fashion. This study illustrates the use of an elastic-perfectly plastic analytical approach to this problem. In addition, the study proposes an incremental method for predicting the nonlinear load-deflection response of the composite system. The accuracy of the analytical model is confirmed with a computer model, and numerical solutions of the analytical model are compared to experimental results from the bending tests conducted by previous researchers. Reasonable agreement is found from the comparisons, which validates the capacity of the analytical model in predicting the structural behaviour of the timber-concrete composite systems in both elastic and post-elastic stages.
Online Access
Free
Resource Link
Less detail

An Accurate One-Dimensional Theory for the Dynamics of Laminated Composite Curved Beams

https://research.thinkwood.com/en/permalink/catalogue889
Year of Publication
2014
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Carpentieri, Gerardo
Tornabene, Francesco
Ascione, Luigi
Fraternalia, Fernando
Publisher
ScienceDirect
Year of Publication
2014
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Dynamic Behavior
Mechanical Theory
Finite Element Model
Bending
Shear
Deformation
Research Status
Complete
Series
Journal of Sound and Vibration
Summary
We model the dynamic behavior of laminated curved beams on the assumption that the different layers of such structures are perfectly bonded at the interface and can show different flexural rotations from one another. We formulate a mechanical theory and a finite element model accounting for bending, shear, warping and extensional deformation modes, as well as radial, tangential and rotary inertias. The main novelty of the proposed theory consists of a generalization of layer-wise displacement approaches available in literature to the dynamics of beams with finite curvature. The work includes some numerical results related to the free vibration of laminated arches and showing different support conditions and aspect ratios to establish comparisons with different theories in the literature. We observe that an accurate mechanical modeling of curved laminated beams is crucial for correct estimation of the eigenfrequencies and eigenmodes of such structures within a 1D framework.
Online Access
Free
Resource Link
Less detail

Stability of Axial Pressure-Stressed Components Made of Solid Wood and Glulam

https://research.thinkwood.com/en/permalink/catalogue1141
Year of Publication
2014
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Solid-sawn Heavy Timber
Author
Theiler, Matthias
Organization
ETH Zurich
Year of Publication
2014
Format
Thesis
Material
Glulam (Glue-Laminated Timber)
Solid-sawn Heavy Timber
Topic
Mechanical Properties
Keywords
Axial Compression
Bending
Monte Carlo
Load Bearing Capacity
Research Status
Complete
Summary
This thesis examines the behaviour of structural timber members subjected to compression alone or in combination with bending. Based on experimental and numerical investigations, the knowledge on the behaviour of these timber members is extended and advanced calculation models are developed. In addition, the accuracy of existing approaches for the design of these members is assessed and modifications are suggested. By means of extensive experimental investigations, a data base was created which can be used for the validation of calculation models and for the assessment of design concepts. The experimental investigations are carried out on eccentrically loaded compression members made of glued laminated timber. Different parameters such as the strength class of the glued laminated timber or the slenderness ratio of the members are investigated.
Online Access
Free
Resource Link
Less detail

Design of Timber Members Subjected to Axial Compression or Combined Axial Compression and Bending Based on 2nd Order Theory

https://research.thinkwood.com/en/permalink/catalogue115
Year of Publication
2015
Topic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Columns
Author
Frangi, Andrea
Steiger, René
Theiler, Matthias
Organization
International Network on Timber Engineering Research (INTER)
Year of Publication
2015
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Columns
Topic
Design and Systems
Mechanical Properties
Keywords
Bending
Buckling
Codes
Compression
Deformation
Monte Carlo
Simulation
Structural
Testing
Conference
INTER 2015
Research Status
Complete
Notes
August 24-27, 2015, Sibenik, Croatia
Summary
The paper examines the behaviour of structural timber members subjected to axial compression or combined axial compression and bending. Based on experimental and numerical investigations, the accuracy of the existing approach in Eurocode 5 for the design of timber members subjected to axial compression or combined axial compression and bending is assessed and modifications are suggested. By means of extensive experimental investigations, a data base was created for the validation of calculation models and for the assessment of design concepts. In order to assess the behaviour of timber members subjected to axial compression or combined axial compression and bending, strain-based calculation models were developed. The investigations indicate that the existing approach of Eurocode 5 based on 2nd order analysis can lead to an overestimation of the load-bearing capacity. Hence, a modified design approach was developed which agrees with the results of the Monte Carlo simulations very well and thus ensures a safe and economical design of timber members subjected to compression or combined compression and bending.
Online Access
Free
Resource Link
Less detail

Wood-Based Beams Strengthened with FRP Laminates: Improved Performance with Pre-Stressed Systems

https://research.thinkwood.com/en/permalink/catalogue305
Year of Publication
2015
Topic
Design and Systems
Mechanical Properties
Material
Solid-sawn Heavy Timber
Author
Kliger, Robert
Haghani, Reza
Brunner, Maurice
Harte, Annette
Schober, Kay-Uwe
Organization
European Journal of Wood and Wood Products
Publisher
Springer Berlin Heidelberg
Year of Publication
2015
Format
Journal Article
Material
Solid-sawn Heavy Timber
Topic
Design and Systems
Mechanical Properties
Keywords
Fibre-Reinforced Polymer
Pre-stressed
Bending
Reinforcement
Research Status
Complete
Series
European Journal of Wood and Wood Products
Summary
Using bonded fibre-reinforced polymer (FRP) laminates for strengthening wooden structural members has been shown to be an effective and economical method. In this paper, properties of suitable FRP materials, adhesives and two ways of strengthening beams exposed to bending moment are presented. Passive or slack reinforcement is one way of strengthening. The most effective way of such a strengthening was to place reinforcement laminates on both tension and compression side of the beam. However, the FRP material is only partially utilised. The second way is to apply pre-stressing in FRP materials prior to bonding to tension side of flexural members and this way was showed to provide the most effective utilisation of these materials. The state of the art of such a strengthening and various methods are discussed. Increasing the load-bearing capacity, introducing a pre-cambering effect and thus improving serviceability which often governs the design and reducing the amount of needed FRP reinforcement are some of the main advantages. A recent development on how to avoid the requirement for anchoring the laminates at the end of the beams to avoid premature debonding is shown and the advantage of such a system is described.
Online Access
Free
Resource Link
Less detail

Design Methods for Load-Bearing Elements from Cross Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue1116
Year of Publication
2015
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Author
Vilguts, Aivars
Serdjuks, Dmitrijs
Goremikins, Vadims
Publisher
IOP Publishing Ltd
Year of Publication
2015
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Design and Systems
Keywords
FEM
Bending
Compression
Static Load
Pine
Uniformly Distributed Load
Strength
Stiffness
Conference
International Conference on Innovative Materials, Structures and Technologies
Research Status
Complete
Notes
September 30-October 2 2015, Riga, Latvia
Summary
Cross-laminated timber is an environmentally friendly material, which possesses a decreased level of anisotropy in comparison with the solid and glued timber. Cross-laminated timber could be used for load-bearing walls and slabs of multi-storey timber buildings as well as decking structures of pedestrian and road bridges. Design methods of cross-laminated timber elements subjected to bending and compression with bending were considered. The presented methods were experimentally validated and verified by FEM. Two cross-laminated timber slabs were tested at the action of static load. Pine wood was chosen as a board's material. Freely supported beam with the span equal to 1.9 m, which was loaded by the uniformly distributed load, was a design scheme of the considered plates. The width of the plates was equal to 1 m. The considered cross-laminated timber plates were analysed by FEM method. The comparison of stresses acting in the edge fibres of the plate and the maximum vertical displacements shows that both considered methods can be used for engineering calculations. The difference between the results obtained experimentally and analytically is within the limits from 2 to 31%. The difference in results obtained by effective strength and stiffness and transformed sections methods was not significant.
Online Access
Free
Resource Link
Less detail

Advanced Modelling of Cross Laminated Timber (CLT) Panels in Bending

https://research.thinkwood.com/en/permalink/catalogue1796
Year of Publication
2015
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Franzoni, Lorenzo
Lebée, Arthur
Lyon, Florent
Forêt, Gilles
Publisher
HAL archives-ouvertes.fr
Year of Publication
2015
Format
Presentation
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Mechanical Properties
Keywords
Bending
Model
Panels
Shear
Stiffness
Failure Behavior
Shear Force
Reference Test
Conference
Euromech Colloquim 556 Theoretical Numerical and Experimental Analyses of Wood Mechanics
Research Status
Complete
Notes
May 2015, Dresde, Germany
Summary
Cross Laminated Timber (CLT) panels are more and more common in timber construction. When submitted to out-of-plane loads, they can be considered as multi-layer plates with anisotropic behaviour. Their main structural issue is the low transverse shear strength of cross layers which leads to rolling shear failure. In addition the fabrication process can include or not lateral boards’ gluing. The resulting discontinuities can be considered as weakly heterogeneous and influence the mechanical response. Moreover the timber construction market requires new technical solutions for CLT, like periodic voids within the panel. This solution leads to lighter and more thermally efficient floors. However, the spaced voids between boards increase the heterogeneity of the panel and therefore the complexity of stresses’ distribution.
Online Access
Free
Resource Link
Less detail

Prestressed Glulam Beams Reinforced with CFRP Bars

https://research.thinkwood.com/en/permalink/catalogue110
Year of Publication
2016
Topic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Yang, Huifeng
Ju, Dongdong
Liu, Weiqing
Lu, Weidong
Publisher
ScienceDirect
Year of Publication
2016
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Design and Systems
Mechanical Properties
Keywords
Bending
Carbon Fiber Reinforced Polymer
Douglas-Fir
Pre-Stress
Reinforcement
Four Point Bending Test
Research Status
Complete
Series
Construction and Building Materials
Summary
This paper describes an experimental test program and theoretical analysis which examines the reinforcing in flexure of glued laminated timber (glulam) beams using bonded-in carbon fiber reinforced polymer (CFRP) bars. A series of four-point bending tests were conducted till failure on unreinforced, passively reinforced and prestressed Douglas fir glulam beams in a simply-supported scheme. The focus of this research was to evaluate the reinforcing efficiency of both passively reinforced and prestressed beams. Test results showed that the flexural capacity of the reinforced, prestressed, prestressed & reinforced (bottom prestressed and top reinforced) beams greatly increased by 64.8%, 93.3% and 131%, respectively. While the maximum improvement of the bending stiffness reached 42.0%. Another important finding was that the extreme fiber tensile strain of timber beams at failure could be remarkably increased due to the presence of the tension reinforcement, which indicated it overcomes the effects of local defects and therefore the failure mode was changed from brittle tension failure to ductile compression failure. Based on the experimental results, a theoretical model was proposed to predict the flexural capacity of unreinforced, reinforced and prestressed timber beams, which was validated by the test data.
Online Access
Free
Resource Link
Less detail

Modelling the Effects of Wood Cambial Age on the Effective Modulus of Elasticity of Poplar Laminated Veneer Lumber

https://research.thinkwood.com/en/permalink/catalogue1417
Year of Publication
2016
Topic
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Author
Girardon, Stéphane
Denaud, Louis
Pot, Guillaume
Rahayu, Istie
Publisher
Springer Paris
Year of Publication
2016
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Topic
Mechanical Properties
Keywords
Poplar
Modulus of Elasticity
Analytical Model
Bending
Thickness
Research Status
Complete
Series
Annals of Forest Science
Summary
A modelling method is proposed to highlight the effect of cambial age on the effective modulus of elasticity of laminated veneer lumber (LVL) according to bending direction and veneer thickness. This approach is relevant for industrial purposes in order to optimize the performance of LVL products. LVL is used increasingly in structural applications. It is obtained from a peeling process, where product’s properties depend on cambial age, hence depend on radial position in the log. This study aims to highlight how radial variations of properties and cambial age impact the mechanical behaviour of LVL panels. An analytical mechanical model has been designed to predict the modulus of elasticity of samples made from poplar LVL panels. The originality of the model resides in the integration of different data from the literature dealing with the variation in wood properties along the radius of the log. The simulation of the peeling process leads to veneers with different mechanical properties, which are randomly assembled in LVL panels. The model shows a correct mechanical behaviour prediction in comparison with experimental results of the literature, in particular with the decrease in MOE in LVL made of juvenile wood. It highlights that the bending direction and veneer thickness have no influence on the average MOE, but affect MOE dispersion. This paper proposed an adequate model to predict mechanical behaviour in the elastic domain of LVL panels based on the properties of raw wood material.
Online Access
Free
Resource Link
Less detail

Influence of Orientation and Number of Layers on the Elastic Response and Failure Modes on CLT Floors: Modeling and Parameter Studies

https://research.thinkwood.com/en/permalink/catalogue1418
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Franzoni, Lorenzo
Lebée, Arthur
Lyon, Florent
Forêt, Gilles
Publisher
Springer Berlin Heidelberg
Year of Publication
2016
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Failure Modes
Bending
Elastic Behavior
Research Status
Complete
Series
European Journal of Wood and Wood Products
Summary
In the present paper, the bending behavior of Cross Laminated Timber panels is investigated by means of the linear elastic exact solution from Pagano (1970; 1969). The resulting stresses are the input for a wood failure criterion, which can point out the first-crack load and the respective dominant failure mode. Heterogeneous layers are modeled as equivalent and homogeneous layers. This simplified and deterministic modeling gives results in good agreement with a reference experimental test. A comparison is made with respect to the panel’s global stiffness and failure stages within the apparent elastic stage. Finally, parameter studies are carried out, in order to quantify CLT limitations and advantages. The effect of varying properties like the panel’s slenderness, orientation of transverse layers and number of layers for a fixed total thickness are investigated.
Online Access
Free
Resource Link
Less detail

44 records – page 1 of 5.