Skip header and navigation

Refine Results By

974 records – page 1 of 49.

Parameter identification for a point-supported cross laminated timber slab based on experimental and numerical modal analysis

https://research.thinkwood.com/en/permalink/catalogue2855
Year of Publication
2021
Topic
Serviceability
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Kawrza, Michael
Furtmüller, Thomas
Adam, Christoph
Maderebner, Roland
Organization
University of Innsbruck
Publisher
Springer
Year of Publication
2021
Country of Publication
Austria
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Serviceability
Acoustics and Vibration
Keywords
Modal Analysis
Complex Mode Shape
Point-Supported
Language
English
Research Status
Complete
Series
European Journal of Wood and Wood Products
Summary
In this paper, the dynamic properties of a point-supported cross-laminated timber slab are studied in order to determine the elastic material parameters on this basis. A detailed experimental modal analysis of the slab with dimensions 16.0 m x 11.0 m is performed, and seven modes including the natural frequencies, damping ratios and mode shape components at 651 sensor positions are identified. The found mode shapes are complex due to environmental influences that occurred during the two-day measurement campaign. This error is corrected by eliminating these influences. A finite element model of the slab is presented, whose parameters in terms of material properties and boundary conditions are determined by a model updating procedure. Based on the modal properties of the seven experimentally identified modes, an accurate and robust parameter set is obtained, which can be used in further numerical studies of the considered CLT to check serviceability limit criteria.
Online Access
Free
Resource Link
Less detail

Experimental seismic response of a resilient 3-storey post-tensioned timber framed building with dissipative braces

https://research.thinkwood.com/en/permalink/catalogue2856
Year of Publication
2020
Topic
Seismic
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Author
Cesare, Antonio Di
Ponzo, Felice Carlo
Lamarucciola, Nicla
Nigro, Domenico
Organization
University of Basilicata
Publisher
Springer
Year of Publication
2020
Country of Publication
Italy
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Topic
Seismic
Keywords
Pres-Lam
Post-Tensioned Timber
Seismic Resilience
Dissipative Brace
Hysteretic Damper
Language
English
Research Status
Complete
Series
Bulletin of Earthquake Engineering
Summary
With the increased number of multi-storey buildings in seismic areas, research efforts have been focused on developing earthquake resilient systems, such as low-damage techniques based on the combination of post-tensioning and dissipating devices. This paper describes the experimental study performed on a 3-storey post-tensioned timber framed (Pres-Lam) building equipped with energy dissipating systems. The testing project consisted of three phases adopting different configurations of the experimental model: (1) post-tensioning to beam-column joints only, (2) post-tensioning and dissipative rocking mechanisms and (3) post-tensioning and dissipative braces. The main objective of this paper is to experimentally investigate on the seismic response of a large-scale specimen with dissipative braces located in high seismic area, considering construction details similar to those adopted in practical applications. During the experimental campaign, the test frame was subjected to more than one hundred ground motions considering a set of seven spectra-compatible earthquakes at increasing intensity levels. The dissipating bracing system with external replaceable hysteretic dampers improves the seismic resilience of multi-storey Pres-Lam buildings, showing inter-storey drift comparable to those with rocking walls, with full recentring capability and without structural damages or post-tensioning losses through seismic tests.
Online Access
Free
Resource Link
Less detail

Assessing the Market Opportunity for Treated Glued Wood Products

https://research.thinkwood.com/en/permalink/catalogue2635
Year of Publication
2010
Topic
Market and Adoption
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Author
Fell, David
Toosi, B.
Organization
FPInnovations
Year of Publication
2010
Country of Publication
Canada
Format
Report
Material
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans
Topic
Market and Adoption
Keywords
Poles
Sound Abatement Barriers
Market Analysis
Language
English
Research Status
Complete
Summary
In this study market opportunities for treated glue-laminated (glulam) products were investigated in the industrial wood sector. The main benefits of treated glulam are through-product treatment and the ability to manufacture treated products in shapes and sizes that do not fit into common treating chambers. These attributes provide for very durable and large glulam structures that are appropriate for outdoor use. For these reasons bridges, power poles, and sound abatement barriers were investigated. These are markets where wood has lost market share to or is being challenged by concrete and steel substitutes. The vehicular bridge market was once heavy to the use of wood. Today wood accounts for only 7% of the number bridges in the US and less than 0.9% of the actual surface area of bridges in place. In interviewing municipalities in Canada it is clear that wood is not the preferred material with many wood bridges being replaced by concrete. Further, none of the municipalities contacted were planning wood bridges. However, wood bridges are still being installed. In the US 0.9% of the bridges installed by area in 2007 were wood. This is good news as wood is holding its market share. Steering clear of high volume or large bridges, local bridges are well suited for wood as they are plentiful, small in scale, and many are in disrepair. If 20% of local bridges were built with wood in Canada this would have equalled approximately $51 million in wood bridge construction in 2007. Municipalities are much more open to the use of wood for pedestrian bridges and overpasses. Their quick construction and aesthetics are positive attributes in this application. One municipality contacted is planning multiple wood pedestrian bridges in the next five years. However, for the purpose of this market review there is little published information on pedestrian bridges. Noise abatement barriers are a good high-volume technical fit for treated glulam. Increases in traffic and current road infrastructure improvements will lead to more demand for sound abatement in the future. This market is dominated by concrete, but at a very high price. If treated glulam can give adequate durability and sound performance properties it would be approximately 20% cheaper than concrete. The market for sound barriers in Canada could utilize up to 10 mmbf of wood per year to construct 80 km of barrier. This product can also be marketed as a high-performance acoustic fence for residential markets. Treated glulam was also considered for utility poles. It is transmission grade poles where glulam would best fit the market as the demand is for longer poles which are more difficult to get in solid wood. This type of pole is where wood is currently being displaced by tubular steel. If glulam poles were used in 25% of the replacement transmission poles per year this could equal 8 mmbf. Light poles or standards are another market to consider. While this is a relatively low volume market glulam light standards are a premium product in European markets.
Online Access
Free
Resource Link
Less detail

Manufacturing Cross-Laminated Timber (CLT): Technological and Economic Analysis

https://research.thinkwood.com/en/permalink/catalogue2636
Year of Publication
2010
Topic
Cost
Design and Systems
Material
CLT (Cross-Laminated Timber)
Author
Julien, F.
Organization
FPInnovations
Year of Publication
2010
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Cost
Design and Systems
Keywords
Manufacturing
Economic Analysis
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Lateral Load Resisting Systems for Engineered Wood Construction

https://research.thinkwood.com/en/permalink/catalogue2637
Year of Publication
2009
Topic
Design and Systems
Wind
Seismic
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Author
Popovski, Marjan
Organization
FPInnovations
Year of Publication
2009
Country of Publication
Canada
Format
Report
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Topic
Design and Systems
Wind
Seismic
Keywords
Lateral Load Resisting System
Construction
Language
English
Research Status
Complete
Summary
The main sources of lateral loads on buildings are either strong winds or earthquakes. These lateral forces are resisted by the buildings’ Lateral Load Resisting Systems (LLRSs). Adequate design of these systems is of paramount importance for the structural behaviour in general. Basic procedures for design of buildings subjected to lateral loads are provided in national and international model building codes. Additional lateral load design provisions can be found in national and international material design standards. The seismic and wind design provisions for engineered wood structures in Canada need to be enhanced to be compatible with those available for other materials such as steel and concrete. Such design provisions are of vital importance for ensuring a competitive position of timber structures relative to reinforced concrete and steel structures. In this project a new design Section on Lateral Load Resisting Systems was drafted and prepared for future implementation in CSA O86, the Canadian Standard for Engineering Design in Wood. The new Section was prepared based on gathering existing research information on the behaviour of various structural systems used in engineered wood construction around the world as well as developing in-house research information by conducting experimental tests and analytical studies on structural systems subjected to lateral loads. This section for the first time tried to link the system behaviour to that of the connections in the system. Although the developed Section could not have been implemented in CSA O86 in its entirety during the latest code cycle that ended in 2008, the information it contains will form the foundation for future development of technical polls for implementation in the upcoming editions of CSA O86. Some parts of the developed Section were implemented in the 2009 edition of CSA O86 as five separate technical polls. The most important technical poll was the one on Special Seismic Design Considerations for Shearwalls and Diaphragms. This technical poll for the first time in North America includes partial capacity design procedures for wood buildings, and represents a significant step forward towards implementing full capacity-based seismic design procedures for wood structures. Implementation of these design procedures also eliminated most of the confusion and hurdles related to the design of wood-based diaphragms according to 2005 National Building Code of Canada. In other polls, the limit for use of unblocked shearwalls in CSA O86 was raised to 4.8 m, and based on the test results conducted during the project, the NLGA SPS3 fingerjoined studs were allowed to be used as substitutes for regular dimension lumber studs in shearwall applications in engineered buildings in Canada. With the US being the largest export market for the Canadian forest products industry, participation at code development committees in the field of structural and wood engineering in the US is of paramount importance. As a result of extensive activities during this project, for the first time one of the AF&PA Special Design Provisions for Wind and Seismic includes design values for unblocked shearwalls that were implemented based on FPInnovations’ research results. In addition, the project leader was involved in various aspects related to the NEESWood project in the US, in part of which a full scale six-storey wood-frame building will be tested at the E-Defense shake table in Miki, Japan in July 2009. Apart from being built from lumber and glued-laminated timber provided from Canada, the building will also feature the innovative Midply wood wall system that was also invented in Canada. The tests are expected to provide further technical evidence for increasing the height limits for platform frame construction in North America. Building construction - Design Earthquakes, Effect on building construction Glued joints - Finger Grading - Lumber Wind loads
Online Access
Free
Resource Link
Less detail

Seismic Performance of 6-Storey Wood-Frame Buildings: Final Report

https://research.thinkwood.com/en/permalink/catalogue2638
Year of Publication
2009
Topic
Seismic
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Ni, Chun
Popovski, Marjan
Organization
FPInnovations
Year of Publication
2009
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Seismic
Keywords
Mid-Rise
Residential
Building Code
Language
English
Research Status
Complete
Summary
spIn this report, the seismic performance of 6-storey wood frame residential buildings is studied. Two building configurations, a typical wood-frame residential building and a building to be tested under the NEESWood project, were studied. For each building configuration, a four-storey building and a six-storey building were designed to the current (pre-April 6, 2009) 2006 BC Building Code (BCBC) and to the anticipated new requirements in the 2010 National Building Code of Canada (NBCC), resulting in four buildings with different designs. The four-storey building designed to the current 2006 BC Building Code served as the benchmark building representing the performance of current permissible structures with common architectural layouts. In the design of both four-storey and six-storey buildings, it was assumed that the buildings are located in Vancouver on a site with soil class C. Instead of using the code formula, the fundamental natural period of the buildings was determined based on the actual mass and stiffness of wood-based shearwalls. The base shear and inter-storey drift are determined in accordance with Clauses 4.1.8.11.(3)(d)(iii) and 4.1.8.11.(3)(d)(iv) of BCBC, respectively. Computer programs DRAIN 3-D and SAPWood were used to evaluate the seismic performance of the buildings. A series of 20 different earthquake records, 14 of the crustal type and 6 of the subcrustal type, were provided by the Earthquake Engineering Research Facility of the University of British Columbia and used in the evaluation. The records were chosen to fit the 2005 NBCC mean PSA and PSV spectra for the city of Vancouver. For representative buildings designed in accordance with 2006 BCBC, seismic performance with and without gypsum wall board (GWB) is studied. For representative buildings designed in accordance with the 2010 NBCC, the seismic performance with GWB is studied. For the NEESWood building redesigned in accordance with 2010 NBCC, seismic performance without GWB is studied. Ignoring the contribution of GWB would result in a conservative estimate of the seismic performance of the building. In the 2006 BCBC and 2010 NBCC, the inter-storey drift limit is set at 2.5 % of the storey height for the very rare earthquake event (1 in 2475 year return period). Limiting inter-storey drift is a key parameter for meeting the objective of life safety under a seismic event. For 4-storey and 6-storey representative wood-frame buildings where only wood-based shearwalls are considered, results from both DRAIN-3D and SAPWood show that none of the maximum inter-storey drifts at any storey under any individual earthquake exceed the 2.5% inter-storey drift limit given in the building code. With DRAIN-3D, the average maximum inter-storey drifts are approximately 1.2% and 1.5% for 4-storey and 6-storey buildings designed with 2006 BCBC, respectively. For the NEESWood wood-frame building, none of the maximum inter-storey drifts at any storey under any individual earthquake exceed the 2.5% inter-storey drift limit for 4-storey building obtained from SAPWood and 6-storey building obtained from DRAIN-3D and SAPWood. For any 4-storey building analysed with DRAIN-3D, approximately half of the earthquakes resulted in the maximum inter-storey drifts greater than 2.5% inter-storey limit. This is partly due to the assumptions used in Drain-3D model in which the lumped mass at each storey is equally distributed to all the nodes of the floor. As a result, the total weight to counteract the uplift force at the ends of a wall would be much smaller than that anticipated in the design, thus causing hold-downs to yield and large uplift deformations to occur. Based on the analyses of a representative building and a redesigned NEESWood building situated in the city of Vancouver that subjected the structures to 20 earthquake records, 6-storey wood-frame building is expected to show similar or smaller inter-storey drift than a 4-storey wood-frame building, which is currently deemed acceptable under the current building code. Building construction - Design Building construction - Specfications Earthquakes, Effect on building construction
Online Access
Free
Resource Link
Less detail

2021 Edition of Technical Guide for the Design and Construction of Tall Wood Buildings in Canada

https://research.thinkwood.com/en/permalink/catalogue2585
Topic
Design and Systems
Application
Wood Building Systems
Organization
FPInnovations
Country of Publication
Canada
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Structural
Seismic
Fire Performance
Vibration
Acoustics
Building Envelope
Sustainability
Prefabrication
Monitoring
Research Status
In Progress
Notes
Project contact is Erol Karacabeyli at FPInnovations
Summary
To support NRCan's Tall Wood Building Demonstration Initiative, FPInnovations developed and published the 2014 Edition of Technical Guide for the Design and Construction of Tall Wood Buildings in Canada. More than 80 technical professionals comprised of design consultants and experts from FPInnovations, the National Research Council, the Canadian Wood Council and universities were involved in its development. The Guide has gained national and worldwide reputation as one of the most complete and credible documents helping to introduce to the design and construction community, and Authorities Having Jurisdiction the terms "Mass Timber Construction" and "Hybrid Tall Wood Buildings". Since the publication of the First Edition, a number of tall wood buildings have been designed and constructed. Substantial regulatory changes are expected to happen based on the experience obtained from the demonstration initiative and the extensive research that has taken place domestically and internationally since the publication of the First Edition. These developments highlight a need for the Guide to be updated so that it aligns with efforts currently underway nationally and provincially and continues to lead in providing the design and construction community technical insight into new opportunities for building in wood. The First Edition of the Guide helped to focus the efforts of the early adopters who participated in NRCan's Tall Wood Building Demonstration Initiative. Updating and aligning the Guide with the release of the new National Building Code of Canada and the Canadian wood design standard (CSA O86), and sharing the experiences gained from tall wood buildings built since the First Edition, will not only continue to expand the base of early adopters, but also help to move aspects of mass timber and hybrid wood buildings into the mainstream.
Less detail

Numerical Analysis and Its Laboratory Verification in Bending Test of Glue Laminated Timber Pre-Cracked Beam

https://research.thinkwood.com/en/permalink/catalogue2426
Year of Publication
2019
Topic
Mechanical Properties
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Kawecki, Bartosz
Podgórski, Jerzy
Publisher
MDPI
Year of Publication
2019
Country of Publication
Switzerland
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Design and Systems
Keywords
Laboratory Tests
Damage
Finite Element Model
Pine
Softwood
Bonding
Language
English
Research Status
Complete
Series
Materials
Online Access
Free
Resource Link
Less detail

Use of Northern Hardwoods in Glued-laminated Timber: A Study of Bondline Shear Strength and Resistance to Moisture

https://research.thinkwood.com/en/permalink/catalogue2427
Year of Publication
2019
Topic
Moisture
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems

Comparison of Test Methods for the Determination of Delamination in Glued Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2428
Year of Publication
2019
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems

Comparative Life-cycle Assessment of a Mass Timber Building and Concrete Alternative

https://research.thinkwood.com/en/permalink/catalogue2429
Year of Publication
2020
Topic
Environmental Impact
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Mechanical Properties of Glued-Laminated Timber with Different Assembly Patterns

https://research.thinkwood.com/en/permalink/catalogue2430
Year of Publication
2019
Topic
Mechanical Properties
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Wood Building Systems

Development of Urban Timber Buildings using Glued Laminated Timber having Fire Resistance

https://research.thinkwood.com/en/permalink/catalogue2431
Year of Publication
2019
Topic
Fire
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Miyazaki, K.
Matsuzaki, H.
Publisher
IOP Publishing Ltd
Year of Publication
2019
Country of Publication
Japan
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Design and Systems
Keywords
Mid-Rise
High-Rise
Fire Resistance
Language
English
Research Status
Complete
Series
IOP Conference Series: Earth and Environmental Science
Online Access
Free
Resource Link
Less detail

The Global Mass Timber Panel (MTP) Industry in a Post-Pandemic New Normal

https://research.thinkwood.com/en/permalink/catalogue2782
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Organization
TallWood Design Institute
Oregon State University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Topic
Market and Adoption
Keywords
Manufacturing
Production Capacity
Research Status
In Progress
Notes
Project contact is Lech Muszynski, Oregon State University College of Forestry
Summary
This research is a continuation of a long-term effort of systematically monitoring developments in the global CLT industry launched by the PI in 2011 and since 2017 partially funded by an ARS/TDI grant. Overall, including research conducted before ARS funding, this effort has involved two surveys launched in 2016 and in 2019; 46 targeted site tours of CLT manufacturing lines located in the USA, Japan, Australia, New Zealand, China, France, Germany, Norway, Sweden, Finland, and Estonia; and an extensive review of trade journals tracking the development of the CLT industry. While adhesive-bonded CLT remains the main focus of the research, beginning with 2017 the survey also included two related mass timber panel (MTP) products classified as glueless CLT (massive cross-laminated timber panels bonded with nails and hardwood dowels), MTP hardware manufacturers, construction sites and research laboratories concerned with MTP related research. To-date we have created and populated a unique database covering more than 116 manufacturing plants (including more than 60 CLT lines) across the globe. The database includes information on MTP manufacturers within and outside the MTP industry cluster, including: changes in production capacity and dominant technologies in global MTP production; key success factors and constraints determining the emergence and growth of production; differences in perception of opportunities, risks, challenges and constraints; related business models, strategies, contextual policies, and; the role of innovation systems.
Less detail

A holistic framework for designing for structural robustness in tall timber buildings

https://research.thinkwood.com/en/permalink/catalogue2853
Year of Publication
2021
Topic
Design and Systems
Material
Other Materials
Application
Wood Building Systems
Author
Voulpiotis, Konstantinos
Köhler, Jochen
Jockwer, Robert
Frangi, Andrea
Organization
ETH Zurich
National Technical University of Norway
Chalmers University of Technology
Publisher
Elsevier
Year of Publication
2021
Country of Publication
Switzerland
Norway
Sweden
Format
Journal Article
Material
Other Materials
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Robustness
Tall Timber Buildings
Disproportionate Collapse
Reliability
System Effects
Language
English
Research Status
Complete
Series
Engineering Structures
Summary
With the ever-increasing popularity of engineered wood products, larger and more complex structures made of timber have been built, such as new tall timber buildings of unprecedented height. Designing for structural robustness in tall timber buildings is still not well understood due the complex properties of timber and the difficulty in testing large assemblies, making the prediction of tall timber building behaviour under damage very difficult. This paper discusses briefly the existing state-of-the-art and suggests the next step in considering robustness holistically. Qualitatively, this is done by introducing the concept of scale, that is to consider robustness at multiple levels within a structure: in the whole structure, compartments, components, connections, connectors, and material. Additionally, considering both local and global exposures is key in coming up with a sound conceptual design. Quantitatively, the method to calculate the robustness index in a building is presented. A novel framework to quantify robustness and find the optimal structural solution is presented, based on the calculation of the scenario probability-weighted average robustness indices of various design options of a building. A case study example is also presented in the end.
Online Access
Free
Resource Link
Less detail

Structural Means for Fire-Safe Wooden Façade Design

https://research.thinkwood.com/en/permalink/catalogue2854
Year of Publication
2021
Topic
Fire
Material
Other Materials
Application
Building Envelope
Author
Engel, Thomas
Werther, Norman
Organization
Technical University of Munich
Publisher
Springer
Year of Publication
2021
Country of Publication
Germany
Format
Journal Article
Material
Other Materials
Application
Building Envelope
Topic
Fire
Keywords
Fire Safety
Fire Spread
Fire Stop
Wooden Façade
Language
English
Research Status
Complete
Series
Fire Technology
Summary
This study investigates five fire stop variants used to limit the spread of fire on wooden façades. For this purpose, five fire tests using various types of wooden façade claddings and different fire stops were conducted as full-scale tests and compared to the existing findings. The influences and interactions between the material qualities of the external wall behind the façade cladding, the construction type of the wooden façade cladding, the design of the substructure, the depth of the ventilation gap, and the design of the fire stops were investigated. In evaluating the fire stops, the design of the interior corners, the joint design, and the influence of thermal expansion were examined. Finally, design proposals for the design of fire stops at wooden façades in order to limit the spread of fire were derived based on this evaluation. The outlook presents further needs that need to be investigated in the future in order to clarify undiscussed aspects or points that were ultimately not evaluated within the scope of this study.
Online Access
Free
Resource Link
Less detail

Multi-State Effort to Overcome Barriers to Low-value Hardwood Lumber for CLT Manufacture

https://research.thinkwood.com/en/permalink/catalogue2633
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Organization
Virginia Polytechnic Institute and State University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Shear Analogy
Yellow Poplar
Mechanical Tests
Research Status
In Progress
Notes
Project contact is Henry Quesada at Virginia Polytechnic Institute and State University
Summary
This project is a multistate industry-university collaboration between SmartLam, the Northeastern Lumber Manufacturers Association (NELMA), the American Plywood Association (APA), IKD Architectures, Virginia Tech, and Purdue University to advance the utilization of hardwood lumber for the fabrication of Cross- Laminated Timber (CLT). This new proposal builds upon a previous Wood Innovation project. The collaboration among the organizations proposes to: 1) apply the shear analogy method to hardwood species listed in the National Design Standards (NDS) supplement to assure these species are feasible for the construction of structural CLT panels, 2) create a custom grade CLT layup made of yellow poplar (Liriodendron tulipifera) lumber and get its approval by the Engineered Wood Association (APA), 3) train the hardwood industry in the Midwest and in the Southeast on the application of hardwood structural lumber grading rules, and 4) perform mechanical testing on the hardwood CLT panels used in the Conversation Plinth project by IKD Architectures in Columbus, IN. In 2012 Virginia Tech conducted the first experimental tests on hardwood CLT panels. Results indicated that bonding, strength, and stiffness of yellow poplar CLT panels matched or were superior to some of the softwood CLT layups in the APA standard. Similar results were also obtained by independent testing conducted by the American Hardwood Export Council (AHEC) in 2018. However, further investigation by Virginia Tech found that the main limitations for the use of yellow poplar and other low value hardwood species in CTL panels are 1) lack of experimental data on other hardwood species used in CLT panels, 2) lack of supply of structurally graded hardwood lumber, and 3) acceptance and validation of hardwood CLT panels by the APA standard. Overcoming these limitations is critical for the hardwood lumber industry in order to gain access to the CLT market. Currently, the annual production of CLT panels in the US is about 35,000 m3 but it is expected that in 10 years production will be close to 2 million m3 per year. The outcomes of this project are to increase the utilization of low-value hardwood species from national and private forests and to increase economic development in rural areas in the hardwood regions of the US.
Less detail

Study to Validate the Floor Vibration Design of a New Mass Timber Building

https://research.thinkwood.com/en/permalink/catalogue2634
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Organization
KPFF
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Keywords
Vibration Performance
Damping
Span Length
Prediction
Research Status
In Progress
Notes
Project contact is Jacob McCann at KPFF
Summary
As interest has grown in using mass timber for commercial building projects, so too has the need to better understand the vibration characteristics of mass timber floor systems. Vibration requirements typically drive the spans and thicknesses of mass timber floors. Our team has a unique opportunity to close several crucial knowledge gaps while designing the new Health Sciences Education Building (HSEB) at the University of Washington, which is under design and is scheduled to start construction in the summer of 2019. Case Study for Design Guide – The HSEB will be designed using the U.S. Mass Timber Floor Vibration Design Guide. Vibration performance will be measured to further validate or refine the model calibration suggestions put forth in the Design Guide. Damping Measurements – The HSEB will contain a wide variety of program spaces with varying damping characteristics that will be measured and correlated. Stiffness Measurements – Laboratory and in situ testing will be performed on a several floor framing systems. This will include a variety of span lengths and member depths. It will also include composite behavior of concrete and CLT floors with different connection types. The results of this study will allow for more accurate predictions of floor vibrations. This will significantly reduce the cost of mass timber systems in way that is repeatable and scalable for future architects and engineers.
Less detail

Development of a Cost-Effective CLT Panel Capable of Resisting DOS/DOD Design Basis Threats

https://research.thinkwood.com/en/permalink/catalogue2582
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Ceilings
Floors
Walls
Organization
Karagozian & Case
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Ceilings
Floors
Walls
Topic
Mechanical Properties
Keywords
Ballistic Resistance
Blast Loads
Cost Effective
Research Status
In Progress
Notes
Project contact is Mark Weaver at Karagozian & Case
Summary
Buildings for the U.S. Department of State (DOS) and U.S. Department of Defense (DOD) often have to meet blast as well as forced entry / ballistic resistance (FE/BR) design requirements to mitigate the hazardous effects associated with terrorism. Historically, DOS and DOD buildings exposed to these threats have been constructed using concrete and steel. However, the emergence of cross-laminated timber (CLT) presents an opportunity to provide a sustainable building material alternative to owners and architects developing such structures. Several wood characteristics (i.e., propensity to rupture in a brittle fashion upon being overstressed, relatively low penetration resistance) serve to limit CLT’s effectiveness in resisting blast and FE/BR threats. The proposed effort seeks to address these limitations by investigating the possibility of incorporating commercial off-the-shelf (COTS) building materials into CLT panel designs in order to meet DOS/DOD blast and FE/BR design requirements. Particular emphasis will be placed on ensuring the developed panel designs are cost competitive to facilitate their inclusion in actual buildings. The project team includes an American CLT manufacturer to quickly assess the cost impacts of incorporating COTS materials into CLT panel layups. Additionally, representatives from the DOS, DOD, and an architecture firm routinely involved with the design of DOS buildings will be consulted to ensure programmatic, aesthetic, and detailing issues are considered during candidate panel design development. 
Less detail

Monetizing the Carbon Benefits of Mass Timber to Scale Up Its Deployment in Mid-Rise Housing and Commercial Development: A Pilot in the Metropolitan Boston Area

https://research.thinkwood.com/en/permalink/catalogue2583
Topic
Market and Adoption
Cost
Environmental Impact
Application
Wood Building Systems
Organization
Olifant
Country of Publication
United States
Application
Wood Building Systems
Topic
Market and Adoption
Cost
Environmental Impact
Keywords
Carbon Sequestration
Carbon Offsets
Private Financing
Public Incentives
Forest Carbon Management
Research Status
In Progress
Notes
Project contact is Nicole Knobloch at Olifant
Summary
This pilot project in the metropolitan Boston area will seek to mobilize a combination of public incentives and private financing to monetize – or bring value to – the carbon benefits of mass timber. The goal is to both encourage early adopters concerned about mass timber’s costs and to bring mass timber construction to the city at a scale and in an ongoing manner that will provide a long-term market for local timber while developing an urban “carbon sink” to attract ongoing private investment for voluntary carbon offsets markets. The project will serve as market development to encourage planned mass timber manufacturing plants to open in New England, as incentive for improved forest management for carbon plans being encouraged by public and private groups in Massachusetts and throughout New England, and as a blueprint for other U.S. cities and states seeking to reduce greenhouse gas emissions, increase development, and bring value and new forest product manufacturing to surrounding rural, forested areas.
Less detail

974 records – page 1 of 49.