Skip header and navigation

12 records – page 1 of 1.

The Economic and Emissions Benefits of Engineered Wood Products in a Low-Carbon Future

https://research.thinkwood.com/en/permalink/catalogue2351
Year of Publication
2020
Topic
Environmental Impact
Cost
Material
CLT (Cross-Laminated Timber)
Other Materials
Application
Wood Building Systems
General Application

Why Method Matters: Temporal, Spatial and Physical Variations in LCA and Their Impact on Choice of Structural System

https://research.thinkwood.com/en/permalink/catalogue2142
Year of Publication
2018
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Moncaster, Alice
Pomponi, Francesco
Symons, Katherine
Publisher
Elsevier
Year of Publication
2018
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
Embodied Carbon
Embodied Energy
Case Study
Buildings
Residential
Language
English
Research Status
Complete
Series
Energy and Buildings
Online Access
Free
Resource Link
Less detail

Environmental Performances of a Timber-Concrete Prefabricated Composite Wall System

https://research.thinkwood.com/en/permalink/catalogue1343
Year of Publication
2017
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Application
Walls

Ecological Thermal Refurbishment with Prefabricated Timber Framed Façade Elements for Mid-Rise Buildings

https://research.thinkwood.com/en/permalink/catalogue1783
Year of Publication
2016
Topic
Energy Performance
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Le Levé, Clemens
Badergruber, Thomas
Beikircher, Wilfried
Kraler, Anton
Flach, Michael
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
Mid-Rise
Façade
Thermal
Prefabricated
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5622-5629
Summary
The thermal refurbishment of the building stock is one of the most fundamental challenges of sustainable urban development. Particularly the use of natural and local materials gets an increasing relevance, regarding the embodied energy. The focus of this work is the development of systematised solutions for thermal refurbishment with...
Online Access
Free
Resource Link
Less detail

Assessing Cross Laminated Timber (CLT) as an Alternative Material for Mid-Rise Residential Buildings in Cold Regions in China—A Life-Cycle Assessment Approach

https://research.thinkwood.com/en/permalink/catalogue1209
Year of Publication
2016
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Liu, Ying
Guo, Haibo
Sun, Cheng
Chang, Wen-Shao
Publisher
MDPI
Year of Publication
2016
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
Life-Cycle Assessment
Cradle-to-Grave
China
Cold Regions
Severe Cold Regions
Energy Consumption
Mid-Rise
Residential
Language
English
Research Status
Complete
Series
Sustainability
Summary
Timber building has gained more and more attention worldwide due to it being a generic renewable material and having low environmental impact. It is widely accepted that the use of timber may be able to reduce the embodied energy of a building. However, the development of timber buildings in China...
Online Access
Free
Resource Link
Less detail

Cross-Laminated Timber: Towards a Consistent Structural Insulated Panel for Passive Building in Belgium

https://research.thinkwood.com/en/permalink/catalogue497
Year of Publication
2014
Topic
Energy Performance
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Passive House
Author
Léoskool, Laurent
Descamps, Thierry
Van Parys, Laurent
Trujillo, Vladimir
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Passive House
Topic
Energy Performance
Environmental Impact
Keywords
Low-Energy
Embodied Energy
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Nowadays, it is possible to build zero-energy houses or even positive energy buildings. Nevertheless, many incoherencies exists if we attach importance to the embodied energy of its constructions. The present paper lays on the logic of structural insulat...
Online Access
Free
Resource Link
Less detail

UK Experience of the Use of Timber as a Low Embodied Carbon Structural Material

https://research.thinkwood.com/en/permalink/catalogue2140
Year of Publication
2014
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Timber (unspecified)
Light Frame (Lumber+Panels)
Application
Wood Building Systems

An Application of the CEN/TC350 Standards to an Energy and Carbon LCA of Timber Used in Construction, and the Effect of End-of-Life Scenarios

https://research.thinkwood.com/en/permalink/catalogue2376
Year of Publication
2013
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Timber (unspecified)
Application
Wood Building Systems
General Application
Author
Symons, Katie
Moncaster, Alice
Symons, Digby
Year of Publication
2013
Country of Publication
United Kingdom
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Timber (unspecified)
Application
Wood Building Systems
General Application
Topic
Energy Performance
Keywords
Embodied Carbon
Life-Cycle Assessment
Built Environment
End of Life
LCA
Europe
Language
English
Conference
Australian Life Cycle Assessment Society conference
Research Status
Complete
Summary
The use of timber construction products and their environmental impacts is growing in Europe. This paper examines the LCA approach adopted in the European CEN/TC350 standards, which are expected to improve the comparability and availability of Environmental Product Declarations (EPDs). The embodied energy and carbon (EE and EC) of timber products is discussed quantitatively, with a case study of the Forte building illustrating the significance of End-of-Life (EoL) impacts. The relative importance of timber in the context of all construction materials is analysed using a new LCA tool, Butterfly. The tool calculates EE and EC at each life cycle stage, and results show that timber products are likely to account for the bulk of the EoL impacts for a typical UK domestic building.
Online Access
Free
Resource Link
Less detail

Can Mass-Timber Construction Materials Provide Effective Thermal Capacitance in New Homes?

https://research.thinkwood.com/en/permalink/catalogue241
Year of Publication
2012
Topic
Energy Performance
Environmental Impact
Application
Wood Building Systems

A Comparative Cradle-To-Gate Life Cycle Assessment of Mid-Rise Office Building Construction Alternatives: Laminated Timber or Reinforced Concrete

https://research.thinkwood.com/en/permalink/catalogue52
Year of Publication
2012
Topic
Energy Performance
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
General Application
Author
Robertson, Adam
Lam, Frank
Cole, Raymond
Publisher
MDPI
Year of Publication
2012
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
General Application
Topic
Energy Performance
Environmental Impact
Keywords
Concrete
Embodied Carbon
Life-Cycle Assessment
Mid-Rise
National Building Code of Canada
NBCC
North America
Office Buildings
Language
English
Research Status
Complete
Series
Buildings
ISSN
2075-5309
Summary
The objective of this project was to quantify and compare the environmental impacts associated with alternative designs for a typical North American mid-rise office building. Two scenarios were considered; a traditional cast-in-place, reinforced concrete frame and a laminated timber hybrid design, which utilized engineered wood products (cross-laminated timber (CLT) and glulam). The boundary of the quantitative analysis was cradle-to-construction site gate and encompassed the structural support system and the building enclosure. Floor plans, elevations, material quantities, and structural loads associated with a five-storey concrete-framed building design were obtained from issued-for-construction drawings. A functionally equivalent, laminated timber hybrid design was conceived, based on Canadian Building Code requirements. Design values for locally produced CLT panels were established from in-house material testing. Primary data collected from a pilot-scale manufacturing facility was used to develop the life cycle inventory for CLT, whereas secondary sources were referenced for other construction materials. The TRACI characterization methodology was employed to translate inventory flows into impact indicators. The results indicated that the laminated timber building design offered a lower environmental impact in 10 of 11 assessment categories. The cradle-to-gate process energy was found to be nearly identical in both design scenarios (3.5 GJ/m2), whereas the cumulative embodied energy (feedstock plus process) of construction materials was estimated to be 8.2 and 4.6 GJ/m2 for the timber and concrete designs, respectively; which indicated an increased availability of readily accessible potential energy stored within the building materials of the timber alternative.
Online Access
Free
Resource Link
Less detail

Considering Embodied Energy in the Application of the National Building Code (NBC)

https://research.thinkwood.com/en/permalink/catalogue2328
Organization
Université de Sherbrooke
Country of Publication
Canada
Research Status
In Progress
Notes
Project contact is Ben Amor at Université de Sherbrooke
Summary
Although lifecycle analysis approaches provide a reliable reading of the importance of the embodied energy of buildings, the tool is inaccessible for evaluation in a normative framework. The purpose of the project is to establish prescriptive directives linking the role of Transition Énergie Québec (TEQ) with the Régie du bâtiment du Québec (RBQ), which must ensure the quality of the work and the building safety. Similar to Part 9 of the NBC, it would be desirable to establish prescriptive rules based on know-how allowing a reasonable consideration of gray energy issues. In order to converge towards this approach, a number of tools will be considered. The various life cycle analysis methods (attributive, consequential, dynamic) (Astudillo et al., 2017) will be used, as well as more simplified approaches such as streamlined LCA (Arena et al., 2013, BellonMaurel et al. al., 2015) or simplified calculators, such as the carbon calculator that is currently being developed by Cecobois. The project will consider building carbon neutral objectives.
Less detail

12 records – page 1 of 1.