Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Structural and Thermal Behaviour of a Timber-Concrete Prefabricated Composite Wall System

https://research.thinkwood.com/en/permalink/catalogue247
Year of Publication
2015
Topic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Application
Walls
Author
Destro, Riccardo
Boscato, Giosuè
Mazzali, Ugo
Russo, Salvatore
Peron, Fabio
Romagnoni, Piercarlo
Publisher
ScienceDirect
Year of Publication
2015
Country of Publication
Netherlands
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Application
Walls
Topic
Design and Systems
Mechanical Properties
Keywords
Structural Behaviour
Thermal Behaviour
Prefabrication
Quasi-Static
In-Plane Tests
Language
English
Research Status
Complete
Series
Energy Procedia
Summary
This paper presents the analysis of the structural and thermal behaviour of an timber-concrete prefabricated composite wall system, the Concrete Glulam Framed Panel (CGFP) which is a panel made of a concrete slab and a structural glulam frame. The research analyses the structural performance with quasi-static in-plane tests, focused on the in-plane strength and stiffness of individual panels, and the thermal behaviour of the system with steady state tests using an hot box apparatus. The results validate the efficacy of proposed system ensuring the resistance and the dissipative structural behaviour through the hierarchy response characterized by the wood frame, the braced reinforced concrete panel of the singular module and by the rocking effects of global system.
Online Access
Free
Resource Link
Less detail

Valuation of the Composite Action of Lightweight and Prefabricated Concrete-Wood Floors for Multi-Storey Buildings

https://research.thinkwood.com/en/permalink/catalogue2666
Topic
Connections
Design and Systems
Mechanical Properties
Material
Timber-Concrete Composite
Application
Floors
Wood Building Systems
Organization
Université Laval
Country of Publication
Canada
Material
Timber-Concrete Composite
Application
Floors
Wood Building Systems
Topic
Connections
Design and Systems
Mechanical Properties
Keywords
Finite Element Analysis
Span Limits
Shear Test
Bending Test
Research Status
In Progress
Notes
Project contact is Luca Sorelli at Université Laval
Summary
This project aims to develop a new precast wood / concrete floor system that can push the span limits in multi-storey wood buildings. The multidisciplinary methodology includes a finite element analysis technique using the “DDuctileTCS” software developed at CIRCERB, shear tests on connections, bending tests of the composite beam and an extension of technical standards for the design of composite structures. This project will develop solutions to optimize the composite action and vibration of long-span precast and mixed floors. The methodology consists of: (i) analysis of systems and optimization of shapes by numerical finite element techniques; (ii) connection shear tests; (iii) proof of concept on a prototype beam in the laboratory.
Resource Link
Less detail

The Design of a Semi-Prefabricated LVL-Concrete Composite Floor

https://research.thinkwood.com/en/permalink/catalogue103
Year of Publication
2012
Topic
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Author
Yeoh, David
Fragiacomo, Massimo
Publisher
Hindawi Publishing Corporation
Year of Publication
2012
Country of Publication
Egypt
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Topic
Design and Systems
Keywords
Flexural Stiffness Method
Prefabrication
Language
English
Research Status
Complete
Series
Advances in Civil Engineering
Summary
This paper describes the design of a novel semi-prefabricated LVL-concrete composite floor that has been developed in New Zealand. In this solution, the floor units made from LVL joists and plywood are prefabricated in the factory and transported to the building site. The units are then lifted onto the supports and connected to the main frames of the building and to the adjacent units. Finally, a concrete topping is poured on top of the units in order to form a continuous slab connecting all the units. Rectangular notches cut from the LVL joists and reinforced with coach screws provide the composite action between the concrete slab and the LVL joists. This system proved to be an effective modular solution that ensures rapid construction. A design procedure based on the use of the effective flexural stiffness method, also known as the “gamma method” is proposed for the design of the composite floor at ultimate and serviceability limit states, in the short and long term. By comparison with the experimental results, it is shown that the proposed method leads to conservative design. A step-by-step design worked example of this novel semi-prefabricated composite floor concludes the paper.
Online Access
Free
Resource Link
Less detail

Innovative Composite Steel-Timber Floors with Prefabricated Modular Components

https://research.thinkwood.com/en/permalink/catalogue1350
Year of Publication
2017
Topic
Connections
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Floors
Author
Loss, Cristiano
Davison, Buick
Publisher
ScienceDirect
Year of Publication
2017
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Floors
Topic
Connections
Design and Systems
Mechanical Properties
Keywords
Prefabricated
Multi-Storey
Residential
Bearing Capacity
Stiffness
Construction
Mechanical Connectors
Epoxy
Modular
Bending Tests
Finite Element Model
Language
English
Research Status
Complete
Series
Engineering Structures
Summary
An innovative steel-timber composite floor for use in multi-storey residential buildings is presented. The research demonstrates the potential of these steel-timber composite systems in terms of bearing capacity, stiffness and method of construction. Such engineered solutions should prove to be sustainable since they combine recyclable materials in the most effective way. The floors consist of prefabricated ultralight modular components, with a Cross-Laminated Timber (CLT) slab, joined together and to the main structural system using only bolts and screws. Two novel floor solutions are presented, along with the results of experimental tests on the flexural behaviour of their modular components. Bending tests have been performed considering two different methods of loading and constraints. Each prefabricated modular component uses a special arrangement of steel-timber connections to join a CLT panel to two customized cold-formed steel beams. Specifically, the first proposed composite system is assembled using mechanical connectors whereas the second involves the use of epoxy-based resin. In the paper, a FEM model is provided in order to extend this study to other steel-timber composite floor solutions. In addition, the paper contains the design model to be used in dimensioning the developed systems according to the state of the art of composite structures.
Online Access
Free
Resource Link
Less detail

Timber-Concrete Composite: An Alternative Composite Floor System

https://research.thinkwood.com/en/permalink/catalogue2749
Year of Publication
2020
Topic
Design and Systems
Mechanical Properties
Material
Timber-Concrete Composite
Application
Floors
Author
Collins, Leah
Publisher
Kansas State University
Year of Publication
2020
Format
Thesis
Material
Timber-Concrete Composite
Application
Floors
Topic
Design and Systems
Mechanical Properties
Keywords
Strength
Stiffness
Connections
Fasteners
Bending Stiffness
Stress
Language
English
Research Status
Complete
Summary
The desire for sustainability has propelled innovation in structural engineering for much of the 21st century. Implement sustainable design without sacrificing the structural integrity of a building is important. The timber-concrete composite (TCC) floor system is an alternative floor system that offers superior sustainability and quick installation compared to other composite floors. TCC is comprised of a reinforced concrete slab connected to timber plate/beams by shear connectors that transfer the internal forces through the shear flow. To resist bending forces the reinforced concrete slab experiences the majority of compression stress and the timber plate/beam experience the majority of tension stress. Compared to an equivalent all-concrete section the TCC system has similar strength and stiffness as well as reduced weight.
Online Access
Free
Resource Link
Less detail

Environmental Performances of a Timber-Concrete Prefabricated Composite Wall System

https://research.thinkwood.com/en/permalink/catalogue1343
Year of Publication
2017
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Application
Walls
Author
Fortuna, Stefano
Dalla Mora, Tiziano
Peron, Fabio
Romagnoni, Piercarlo
Publisher
ScienceDirect
Year of Publication
2017
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Application
Walls
Topic
Environmental Impact
Keywords
Concrete Glulam Framed Panel
Embodied Energy
Carbon Footprint
Cradle-to-Gate
Prefabrication
Reinforced Concrete
Language
English
Research Status
Complete
Series
Energy Procedia
Summary
The improvement of environmental performance in building construction could be achieved by prefabrication. This study quantifies and compares the environmental impacts of a Concrete Glulam Framed Panel (CGFP): the basic configuration of this precast component consists in a Cross-Laminated Timber (CLT) frame structure supporting a thin reinforced concrete slab with an interior insulation panel and covered by finishing layers. The research investigates also alternative design of configuration with the substitution of different insulation materials in order to minimize the Embodied Energy and Carbon Footprint values. The boundary of the quantitative analysis is “cradle to gate” including the structural support system; an IMPACT 2002+ characterization methodology is employed to translate inventory flows into impacts indicators. Results present very low values for carbon footprint (60.63 kg CO2eq m-2) and the embodied energy values (919.44 MJ m-2) indicate this hybrid precast structure as a valid alternative building constructions and processes. A detailed discussion of the outputs is presented, including the comparison of the environmental performances depending on different insulation materials.
Online Access
Free
Resource Link
Less detail

A New Concrete-Glulam Prefabricated Composite Wall System: Thermal Behavior, Life Cycle Assessment and Structural Response

https://research.thinkwood.com/en/permalink/catalogue1296
Year of Publication
2018
Topic
Mechanical Properties
Environmental Impact
Material
Glulam (Glue-Laminated Timber)
Application
Walls
Author
Boscato, Giosuè
Dalla Mora, Tiziano
Peron, Fabio
Russo, Salvatore
Romagnoni, Piercarlo
Publisher
ScienceDirect
Year of Publication
2018
Country of Publication
Netherlands
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Walls
Topic
Mechanical Properties
Environmental Impact
Keywords
Strength
Stiffness
Concrete Glulam Framed Panel
Thermal Behaviour
Carbon Footprint
Embodied Energy
Life-Cycle Assessment
Language
English
Research Status
Complete
Series
Journal of Building Engineering
Summary
In a former paper by the authors [1], the elastic behavior of Cross Laminated Timber (CLT) and timber panels having periodic gaps between lateral lamellae has been analyzed. A thick plate homogenization scheme based on Finite Elements computations has been applied. The predicted behavior was in agreement with experimental results. In this paper, simplified closed-form solutions are derived in order to avoid FE modeling. Both cases of narrow gaps of CLT panels and wide gaps of innovative lightweight panels are investigated. CLT and timber panels with gaps are modeled as a space frame of beams connected with wooden blocks. The contribution of both beams and blocks to the panel’s mechanical response is taken into account, leading to closed-form expressions for predicting the panel’s stiffnesses and maximum longitudinal and rolling shear stresses. The derived closed-form solutions are in agreement with the reference FE results and they can be used for practical design purposes.
Online Access
Free
Resource Link
Less detail

Development of Innovative MTP-Concrete Composite Floor System with Notched Timber Connection

https://research.thinkwood.com/en/permalink/catalogue2659
Topic
Connections
Design and Systems
Mechanical Properties
Material
Timber-Concrete Composite
Application
Floors
Author
Zhang, Lei
Organization
University of Alberta
Country of Publication
Canada
Material
Timber-Concrete Composite
Application
Floors
Topic
Connections
Design and Systems
Mechanical Properties
Keywords
Stiffness
Strength
Notched Connections
Shrinkage
Research Status
In Progress
Summary
The objective of this research is to develop optimum notch profile to achieve maximum connection stiffness and strength properties, characterize notched timber connection MTP-concrete floor systems, including concrete shrinkage and develop floor system details and design procedure.
Resource Link
Less detail

Experimental Behavior of a Continuous Metal Connector for a Wood-Concrete Composite System

https://research.thinkwood.com/en/permalink/catalogue730
Year of Publication
2004
Topic
Connections
Design and Systems
Mechanical Properties
Material
Timber-Concrete Composite
PSL (Parallel Strand Lumber)
Application
Floors
Author
Clouston, Peggi
Civjan, Scott
Bathon, Leander
Publisher
Forest Products Society
Year of Publication
2004
Country of Publication
United States
Format
Journal Article
Material
Timber-Concrete Composite
PSL (Parallel Strand Lumber)
Application
Floors
Topic
Connections
Design and Systems
Mechanical Properties
Keywords
Pine
US
Continuous Steel Mesh
Steel Connectors
Push-Out Tests
Shear Strength
Stiffness
Bending Tests
Language
English
Research Status
Complete
Series
Forest Products Journal
Summary
The benefits of using shear connectors to join wood beams to a concrete slab in a composite floor or deck system are many. Studies throughout the world have demonstrated significantly improved strength, stiffness, and ductility properties from such connection systems as well as citing practical building advantages such as durability, sound insulation, and fire resistance. In this study, one relatively new shear connector system that originated in Germany has been experimentally investigated for use with U.S. manufactured products. The connector system consists of a continuous steel mesh of which one half is glued into a southern pine Parallam® Parallel Strand Lumber beam and the other half embedded into a concrete slab to provide minimal interlayer slip. A variety of commercial epoxies were tested for shear strength and stiffness in standard shear or “push out” tests. The various epoxies resulted in a variety of shear constitutive behaviors; however, for two glue types,shear failure occurred in the steel connector resulting in relatively high initial stiffness and ductility as well as good repeatability. Slip moduli and ultimate strength values are presented and discussed. Full-scale bending tests, using the best performing adhesive as determined from the shear tests, were also conducted. Results indicate consistent, near-full composite action system behavior
Online Access
Free
Resource Link
Less detail

Timber-Concrete Composite Structures with Mechanical Connection Systems

https://research.thinkwood.com/en/permalink/catalogue1691
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Timber-Concrete Composite
Author
Kuklík, Petr
Kuklíková, Anna
Gregorová, Anna
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
Topic
Connections
Mechanical Properties
Keywords
Dowel Type Fastener
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4254-4261
Summary
This paper deals with behavior of timber-concrete composite structures with mechanical connection systems. The paper is focused to two different connection systems: using dowel-type fasteners and using special surface connector. Analytical model of dowel-type connection system is based on modification of Johansen´s equations valid for timber to timber connections. Behavior of connection system with special surface connector is evaluated by experiments and numerical simulations. The paper deals also with the evaluation of structural timber and the determination of the performance of structural timber elements.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.