Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Experimental Behavior of a Continuous Metal Connector for a Wood-Concrete Composite System

https://research.thinkwood.com/en/permalink/catalogue730
Year of Publication
2004
Topic
Connections
Design and Systems
Mechanical Properties
Material
Timber-Concrete Composite
PSL (Parallel Strand Lumber)
Application
Floors
Author
Clouston, Peggi
Civjan, Scott
Bathon, Leander
Publisher
Forest Products Society
Year of Publication
2004
Country of Publication
United States
Format
Journal Article
Material
Timber-Concrete Composite
PSL (Parallel Strand Lumber)
Application
Floors
Topic
Connections
Design and Systems
Mechanical Properties
Keywords
Pine
US
Continuous Steel Mesh
Steel Connectors
Push-Out Tests
Shear Strength
Stiffness
Bending Tests
Language
English
Research Status
Complete
Series
Forest Products Journal
Summary
The benefits of using shear connectors to join wood beams to a concrete slab in a composite floor or deck system are many. Studies throughout the world have demonstrated significantly improved strength, stiffness, and ductility properties from such connection systems as well as citing practical building advantages such as durability, sound insulation, and fire resistance. In this study, one relatively new shear connector system that originated in Germany has been experimentally investigated for use with U.S. manufactured products. The connector system consists of a continuous steel mesh of which one half is glued into a southern pine Parallam® Parallel Strand Lumber beam and the other half embedded into a concrete slab to provide minimal interlayer slip. A variety of commercial epoxies were tested for shear strength and stiffness in standard shear or “push out” tests. The various epoxies resulted in a variety of shear constitutive behaviors; however, for two glue types,shear failure occurred in the steel connector resulting in relatively high initial stiffness and ductility as well as good repeatability. Slip moduli and ultimate strength values are presented and discussed. Full-scale bending tests, using the best performing adhesive as determined from the shear tests, were also conducted. Results indicate consistent, near-full composite action system behavior
Online Access
Free
Resource Link
Less detail

Timber-Glass Composite Beams: Experimental Study

https://research.thinkwood.com/en/permalink/catalogue1748
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Timber-Glass Composite
Application
Beams
Author
Fadai, Alireza
Rinnhofer, Matthias
Winter, Wolfgang
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Glass Composite
Application
Beams
Topic
Connections
Mechanical Properties
Keywords
Load Bearing Capacity
Adhesives
Silicone
Epoxy
Strength
Stiffness
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4964-4971
Summary
Glued glass fronts are extensively applied and meet the highest standards. The objective of several research projects was the development of stiffening glass fronts to replace expansive frameworks or wind bracings. Furthermore, the use of timber-glass composite (TGC) beams was investigated. Within the research project "Load Bearing TimberGlass...
Online Access
Free
Resource Link
Less detail

Experimental and Analytical Investigation of Short-Term Behaviour of LVL–Concrete Composite Connections And Beams

https://research.thinkwood.com/en/permalink/catalogue150
Year of Publication
2012
Topic
Connections
Design and Systems
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Beams
Author
Khorsandnia, Nima
Valipour, Hamid
Crews, Keith
Publisher
ScienceDirect
Year of Publication
2012
Country of Publication
Netherlands
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Beams
Topic
Connections
Design and Systems
Mechanical Properties
Keywords
Four Point Bending Test
Screws
Load Deflection
Model
Full Scale
Language
English
Research Status
Complete
Series
Construction and Building Materials
Summary
This paper reports the results of experimental push-out tests on three different types of timber–concrete composite (TCC) connections, including normal screw, SFS and bird-mouth. The load-slip diagrams obtained from lab tests are employed to calculate the slip modulus of the connections for serviceability, ultimate and near collapse cases based on Eurocode 5 recommendations. Additionally, four full-scale TCC beams with normal screw, SFS and bird-mouth are constructed and tested under four-point bending within the serviceability load range to verify the slip modulus of connections which derived from the push-out tests. Further, based on the experimental results and using nonlinear regression, an analytical model each one of the connections is derived which can be easily incorporated into nonlinear FE analyses of TCC beams.
Online Access
Free
Resource Link
Less detail

Design Method for Controlling Vibrations of Wood-Concrete Composite Floors Systems

https://research.thinkwood.com/en/permalink/catalogue1689
Year of Publication
2016
Topic
Acoustics and Vibration
Design and Systems
Mechanical Properties
Material
Timber-Concrete Composite
Application
Floors
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Chui, Ying Hei
Ramzi, Redouane
Gagnon, Sylvain
Mohammad, Mohammad
Ni, Chun
Popovski, Marjan
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Design and Systems
Mechanical Properties
Keywords
Natural Frequencies
Deflection
Bending Stiffness
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4237-4245
Summary
Wood-concrete composite slab floors provide a promising solution for achieving long spans and shallow wood-based floor systems for large and tall wood buildings. In comparison with conventional wood floor systems, such long span and heavy floors have a lower fundamental natural frequency, which challenges the floor vibration controlled design. A laboratory study, including subjective evaluation and measurement of the natural frequencies and one-kN static deflections, was conducted on wood-concrete composite floors. Method of calculation of the composite bending stiffness of the wood-concrete composite floor is proposed. The design criterion for human comfort was derived from the subjective evaluation results using the calculated fundamental natural frequency and 1 kN static deflection of one meter wide strip of the composite floor. The equation to directly determine the vibration controlled spans from the stiffness and mass was derived. Limited verification was performed. Further verification is needed when more field wood-concrete composite floors become available.
Online Access
Free
Resource Link
Less detail

Development of Steel Frame and Timber Floor System: Part 2. An Experimental Study on Flexural Performance of CLT Floor Encased Reinforcement Bars

https://research.thinkwood.com/en/permalink/catalogue949
Year of Publication
2014
Topic
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Kuratomi, Kohitaka
Inada, Tatsuo
Fujii, Hideyuki
Organization
Architectural Institute of Japan
Year of Publication
2014
Country of Publication
Japan
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Design and Systems
Mechanical Properties
Keywords
Bending Test
Reinforcement
Language
Japanese
Research Status
Complete
Summary
Low-damage seismic-resistant post-tensioning technologies were first developed during the PREcast Seismic Structural Systems program, coordinated by the University of California San Diego. Different connections were developed and tested as part of the research program, and the most stable solution was the hybrid connection, which provides a combination of re-centering and dissipative contributions. The hybrid connection was later extended to Laminated Veneer Lumber Elements (LVL) and referred to as Pres-Lam (Prestressed Laminated) system. As part of a broader experimental campaign on frame and walls systems, several experimental tests were carried out on small-scale specimens of post-tensioned single walls and on coupled walls systems. More recently 2/3 scale quasistatic tests were performed on different wall configurations. The paper shows the evaulation of the seismic performance factors of post-tensioned timber wall systems, carried out according to the FEMA P695 procedure. The latter utilizes nonlinear analysis techniques, and explicitly considers uncertainties in ground motion, modelling, design, and test data. The technical approach is a combination of traditional code concepts, advanced nonlinear dynamic analyses, and risk-based assessment techniques. A set of archetype buildings were developed to characterize the behaviour of the system. Several parameters were accounted for, such as the building height, lateral load resisting system, magnitude of the gravity loads and seismic design category. The system archetypes were represented by numerical models developed to simulate the full range of behavioural aspects of the system. Nonlinear quasi-static and dynamic analyses were carried out to determine the system over-strength factors and median collapse capacity of the buildings. The system performance was then assessed by computing the Collapse Margin Ratio (CMR) defined as the ratio of the median collapse (SCT) and MCE (SMT) spectral accelerations.Once the non-linear analysis results confirmed the CMR values were within acceptable values, the trial value of the seismic response modification, R, was confirmed, and the system seismic performance factors were evaluated.
Online Access
Free
Resource Link
Less detail

Experimental Investigation of Bending Behavior of Timber-To-Timber Composite-Section Beams

https://research.thinkwood.com/en/permalink/catalogue690
Year of Publication
2014
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Salem, Osama
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Design and Systems
Keywords
Self-Tapping Screws
Flexural Stiffness
CLT-to-Glulam
Structural Behaviour
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Wood has long been in demand as a competent building material due to its beauty, economy, and ease of construction. Excellent material properties are exhibited by a number of new engineered wood products such as gluedlaminated (Glulam) and cross-laminated timbers (CLT). New experimental data on the structural behaviour of CLT-toGlulam composite-section beams is presented in this paper. Four large-scale test assemblies composed of two different engineered wood sections were tested. Beam composite sections were built of a top flange part made of a cross-laminated timber slab and a web part made of a Glulam rectangular section. The two parts forming each beam section were connected together using 5/16 self-tapping screws in order to create composite action. Results from this research showed that reducing the spacing distance between screws considerably increased the flexural stiffness of the CLT-to-Glulam composite beams.
Online Access
Free
Resource Link
Less detail

Experimental Study on Flexural Performance of Glued-Laminated-Timber-Bamboo Beams

https://research.thinkwood.com/en/permalink/catalogue1387
Year of Publication
2018
Topic
Design and Systems
Mechanical Properties
Material
Other Materials
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Xu, Qingfeng
Leng, Yubing
Chen, Xi
Harries, Kent
Chen, Lingzhu
Wang, Zhuolin
Publisher
Springer Netherlands
Year of Publication
2018
Country of Publication
Netherlands
Format
Journal Article
Material
Other Materials
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Design and Systems
Mechanical Properties
Keywords
Bamboo
Spruce
Douglas-Fir
Flexural Performance
Strengthening
Language
English
Research Status
Complete
Series
Materials and Structures
ISSN
1871-6873
Summary
Engineered bamboo, produced through the technique of gluing and reconstituting, has better mechanical properties than round bamboo and some wood products. This paper studies the flexural performance of laminated beams produced with timber and engineered bamboo. The six-layer beams were made from Douglas fir, spruce, bamboo scrimber and laminated bamboo, or a combination of these. It is confirmed that glued-laminated wood beams producedwith wood of weak strength, like spruce, can be strengthened by gluing engineered bamboo lumbers on the outer faces, thus achieving better utilization of the fast growing economic wood species. Flexural failure of the laminated beams was primarily triggered by tensile fracture of the bottom fiber in mid-span, followed by horizontal tearing beside the broken surface. No relative slip between layers was observed before failure, therefore the flexural capacity of the laminated beams can be predicted using equilibrium and compatibility conditions according to the plane section assumption
Online Access
Free
Resource Link
Less detail

Behavior of Timber-Concrete Composite Beams with Two Types of Steel Dowel Connectors

https://research.thinkwood.com/en/permalink/catalogue1996
Year of Publication
2018
Topic
Connections
Mechanical Properties
Material
Timber-Concrete Composite
Application
Beams
Author
Molina, Julio
Calil Junior, Carlito
Year of Publication
2018
Country of Publication
South Korea
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Beams
Topic
Connections
Mechanical Properties
Keywords
Steel Dowels
Strength
Stiffness
Mohler Model
Shear Tests
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Experimental Investigation into the Flexural Behavior of Hollow, Full, and Intermittently Stiffened (bamboo-like) Glulam Beams from Larch Wood

https://research.thinkwood.com/en/permalink/catalogue2461
Year of Publication
2019
Topic
Mechanical Properties
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Beams

Experimental Analysis of the Structural Behavior of Timber-Concrete Composite Slabs Made of Beech-Laminated Veneer Lumber

https://research.thinkwood.com/en/permalink/catalogue611
Year of Publication
2013
Topic
Connections
Mechanical Properties
Material
Timber-Concrete Composite
LVL (Laminated Veneer Lumber)
Application
Floors
Author
Boccadoro, Lorenzo
Frangi, Andrea
Publisher
American Society of Civil Engineers
Year of Publication
2013
Country of Publication
United States
Format
Journal Article
Material
Timber-Concrete Composite
LVL (Laminated Veneer Lumber)
Application
Floors
Topic
Connections
Mechanical Properties
Keywords
Beech
Spruce
Load Carrying Capacity
Structural Behavior
Failure Modes
Notch Connections
Language
English
Research Status
Complete
Series
Journal of Performance of Constructed Facilities
Summary
The wood engineering community has dedicated a significant amount of effort over the last decades to establish a reliable predictive model for the load-carrying capacity of timber connections under wood failure mechanisms. Test results from various sources (Foschi and Longworth 1975; Johnsson 2003; Quenneville and Mohammad 2000; Stahl et al. 2004; Zarnani and Quenneville 2012a) demonstrate that for multi-fastener connections, failure of wood can be the dominant mode. In existing wood strength prediction models for parallel to grain failure in timber connections using dowel-type fasteners, different methods consider the minimum, maximum or the summation of the tensile and shear capacities of the failed wood block planes. This results in disagreements between the experimental values and the predictions. It is postulated that these methods are not appropriate since the stiffness in the wood blocks adjacent to the tensile and shear planes differs and this leads to uneven load distribution amongst the resisting planes (Johnsson 2004; Zarnani and Quenneville 2012a). The present study focuses on the nailed connections. A closed-form analytical method to determine the load-carrying capacity of wood under parallel-to-grain loading in small dowel-type connections in timber products is thus proposed. The proposed stiffness-based model has already been verified in brittle and mixed failure modes of timber rivet connections (Zarnani and Quenneville 2013b).
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.