Skip header and navigation

10 records – page 1 of 1.

Innovative Composite Steel-Timber Floors with Prefabricated Modular Components

https://research.thinkwood.com/en/permalink/catalogue1350
Year of Publication
2017
Topic
Connections
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Floors

Experimental Tests of Cross-Laminated Timber Floors to be Used in Timber-Steel Hybrid Structures

https://research.thinkwood.com/en/permalink/catalogue96
Year of Publication
2014
Topic
Connections
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Loss, Cristiano
Piazza, Maurizio
Zandonini, Riccardo
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Connections
Design and Systems
Seismic
Keywords
Diaphragms
Residential
Stiffness
Testing
Timber-Steel Hybrid
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Hybrid structural systems assembled connecting steel elements and cross-laminated timber panels (CLT) can be a valid alternative to traditional systems in the construction of residential buildings. Such systems can combine the industrialized construction...
Online Access
Free
Resource Link
Less detail

Behavior of Interlocking Cross-Laminated Timber (ICLT) Shear Walls

https://research.thinkwood.com/en/permalink/catalogue240
Year of Publication
2011
Topic
Connections
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls

Innovative Construction System for Sustainable Buildings

https://research.thinkwood.com/en/permalink/catalogue140
Year of Publication
2015
Topic
Cost
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors
Shear Walls

A Comparison of the Energy Saving and Carbon Reduction Performance between Reinforced Concrete and Cross-Laminated Timber Structures in Residential Buildings in the Severe Cold Region of China

https://research.thinkwood.com/en/permalink/catalogue1207
Year of Publication
2017
Topic
Energy Performance
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Guo, Haibo
Liu, Ying
Meng, Yiping
Huang, Haoyu
Sun, Cheng
Shao, Yu
Publisher
MDPI
Year of Publication
2017
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Environmental Impact
Keywords
Energy Consumption
Carbon Emissions
Residential
Severe Cold Regions
Simulation
Reinforced Concrete
Life-Cycle Assessment
Language
English
Research Status
Complete
Series
Sustainability
ISSN
2071-1050
Summary
This paper aims to investigate the energy saving and carbon reduction performance of cross-laminated timber residential buildings in the severe cold region of China through a computational simulation approach. The authors selected Harbin as the simulation environment, designed reference residential...
Online Access
Free
Resource Link
Less detail

Development of a Ready-to- Assemble Tornado Shelter from Cross-Laminated Timber (CLT): Impact and Wind Pressure Testing

https://research.thinkwood.com/en/permalink/catalogue2099
Year of Publication
2019
Topic
Design and Systems
Wind
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Falk, Robert
Bridwell, James
Williamson, Tom
Black, Todd
Organization
Forest Products Laboratory
Year of Publication
2019
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Wind
Keywords
Tornado
Residential
Lateral Load
Uplift Test
Language
English
Research Status
Complete
Summary
The development and use of tornado shelters have helped reduce loss of human life associated with extreme weather events. Currently, the majority of shelters are built from either steel or concrete. The development of the crosslaminated timber (CLT) industry in the United States has provided an ideal wood product to resist the debris impact...
Online Access
Free
Resource Link
Less detail

Wind-Induced Dynamic Response of a 22-Storey Timber Building: Options for Structural Design of the Hallonbergen Project

https://research.thinkwood.com/en/permalink/catalogue64
Year of Publication
2015
Topic
Design and Systems
Wind
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Seismic Design of Core-Walls for Multi-Storey Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue134
Year of Publication
2013
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shafts and Chases
Author
Dunbar, Andrew
Pampanin, Stefano
Palermo, Alessandro
Buchanan, Andrew
Year of Publication
2013
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shafts and Chases
Topic
Design and Systems
Seismic
Keywords
Multi-Storey
Prefabrication
Pres-Lam
Residential
Quasi-Static Loading
Energy Dissipation
U-Shaped Flexural Plates
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 26-28, 2013, Wellington, New Zealand
Summary
This paper describes options for seismic design of pre-fabricated timber core-wall systems, used as stairwells and lift shafts for lateral load resistance in multi-storey timber buildings. The use of Cross-Laminated Timber (CLT) panels for multi-storey timber buildings is gaining popularity throughout the world, especially for residential construction...
Online Access
Free
Resource Link
Less detail

The Seismic Behaviour of Buildings Erected in Solid Timber Construction

https://research.thinkwood.com/en/permalink/catalogue276
Year of Publication
2012
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Zero-Waste Mass-Timber Residential High-Rise: A Sustainable High-density Housing Solution

https://research.thinkwood.com/en/permalink/catalogue2381
Year of Publication
2020
Topic
Environmental Impact
Design and Systems
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
van Houten, Robert
Publisher
Delft University of Technology
Year of Publication
2020
Country of Publication
Netherlands
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Design and Systems
Keywords
Mass Timber
Residential
High-Rise
End of Life
Language
English
Research Status
Complete
Summary
More and more people live in cities. The building industry is responsible for 33% of waste production and is set to increase further to 50% in 2025. The energy efficiency is continuously increased, but the waste production at the end of life of a building is largely ignored. This design proposes a solution in the form of a zero-waste high-rise design. It uses only recyclable or renewable materials. Mass-timber is chosen as the main material as it is not only renewable and easily reusable, it is also a storage of CO2. The design reuses the foundation of existing buildings, and with the lightweight properties of mass-timber, increases the density on the location by building taller. The design is four times taller as the current buildings. To allow for sustainable densification, the design offers public and collective qualities. The building has been designed is such a way to be easily refitted during its life cycle or to be completely disassembled at the end of life.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.