Skip header and navigation

10 records – page 1 of 1.

Experimental and Analytical Investigation of Short-Term Behaviour of LVL–Concrete Composite Connections And Beams

https://research.thinkwood.com/en/permalink/catalogue150
Year of Publication
2012
Topic
Connections
Design and Systems
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Beams
Author
Khorsandnia, Nima
Valipour, Hamid
Crews, Keith
Publisher
ScienceDirect
Year of Publication
2012
Country of Publication
Netherlands
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Beams
Topic
Connections
Design and Systems
Mechanical Properties
Keywords
Four Point Bending Test
Screws
Load Deflection
Model
Full Scale
Language
English
Research Status
Complete
Series
Construction and Building Materials
Online Access
Free
Resource Link
Less detail

Analysis of the Timber-Concrete Composite Systems with Ductile Connection

https://research.thinkwood.com/en/permalink/catalogue113
Year of Publication
2013
Topic
Mechanical Properties
Material
Timber-Concrete Composite
Author
Zhang, Chao
Organization
University of Toronto
Year of Publication
2013
Country of Publication
Canada
Format
Thesis
Material
Timber-Concrete Composite
Topic
Mechanical Properties
Keywords
Bending
Ductility
Model
Load Deflection
Tension
Shear Connection
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Flexural Performance of Novel Nail-Cross-Laminated Timber Composite Panels

https://research.thinkwood.com/en/permalink/catalogue2649
Year of Publication
2020
Topic
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)
Author
Zhang, Yannian
Nehdi, Moncef
Gao, Xiaohan
Zhang, Lei
Publisher
MDPI
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Design and Systems
Keywords
Panels
Flexural Performance
Nails
Bending
Model
Prediction
Fracture
Language
English
Research Status
Complete
Series
Applied Sciences
Summary
Cross-laminated timber (CLT) is an innovative wood panel composite that has been attracting growing interest worldwide. Apart from its economic benefits, CLT takes full advantage of both the tensile strength parallel to the wood grain and its compressive strength perpendicular to the grain, which enhances the load bearing capacity of the composite. However, traditional CLT panels are made with glue, which can expire and lose effectiveness over time, compromising the CLT panel mechanical strength. To mitigate such shortcomings of conventional CLT panels, we pioneer herein nail-cross-laminated timber (NCLT) panels with more reliable connection system. This study investigates the flexural performance of NCLT panels made with different types of nails and explores the effects of key design parameters including the nail incidence angle, nail type, total number of nails, and number of layers. Results show that NCLT panels have better flexural performance than traditional CLT panels. The failure mode of NCLT panels depends on the nail angle, nail type, and quantity of nails. A modified formula for predicting the flexural bearing capacity of NCLT panels was proposed and proven accurate. The findings could blaze the trail for potential applications of NCLT panels as a sustainable and resilient construction composite for lightweight structures.
Online Access
Free
Resource Link
Less detail

Compression Behaviors of Parallel Bamboo Strand Lumber Under Static Loading

https://research.thinkwood.com/en/permalink/catalogue2510
Year of Publication
2019
Topic
Mechanical Properties
Design and Systems
Material
Other Materials
Application
Wood Building Systems

Structural Response of Timber-Concrete Composite Beams Predicted by Finite Element Models And Manual Calculations

https://research.thinkwood.com/en/permalink/catalogue145
Year of Publication
2014
Topic
Serviceability
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Beams
Author
Khorsandnia, Nima
Valipour, Hamid
Crews, Keith
Publisher
SAGE Journals
Year of Publication
2014
Country of Publication
United States
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Beams
Topic
Serviceability
Keywords
Connections
Eurocode
Finite Element Model
Loading
Model
Language
English
Research Status
Complete
Series
Advances in Structural Engineering
Online Access
Free
Resource Link
Less detail

Experimental Study on Loading Capacity of Glued-Laminated Timber Arches Subjected to Vertical Concentrated Loads

https://research.thinkwood.com/en/permalink/catalogue2581
Year of Publication
2020
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Arches
Author
Zhou, Jiale
Chuanxi, Li
Ke, Lu
He, Jun
Wang, Zhifeng
Publisher
Hindawi
Year of Publication
2020
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Arches
Topic
Design and Systems
Keywords
In-Plane Loading
Capacity
Douglas-Fir
Model
Failure Modes
Language
English
Research Status
Complete
Series
Advances in Civil Engineering
Summary
Glued-laminated timber arches are widely used in gymnasiums, bridges, and roof trusses. However, studies on their mechanical behaviours and design methods are still insufficient. This paper investigates the in-plane loading capacity of circular glued-laminated timber arches made of Douglas fir. Experiments were conducted on four timber-arch models with different rise-to-span ratios under concentrated loads at mid-span and quarter-point locations. The structural responses, failure modes, and loading capacity of the timber arch specimens were obtained. The results show that the timber arches presented symmetric and antisymmetric deformation under mid-point and quarter-point loading conditions, respectively. The downward shifting of the neutral axis of the cross section was observed under mid-point loading condition, which contributes to higher loading capacity compared to that under quarter-point loading condition. The loading condition significantly affects the ultimate loads and the strain distribution in the cross section. Based on the design formula in current standards for timber structures, an equivalent beam-column method was introduced to estimate the loading capacity of the laminated timber arches under vertical concentrated loads. The moment amplification factor in the formula was compared and discussed, and the value provided in the National Design Specification for Wood Construction was recommended with acceptable accuracy.
Online Access
Free
Resource Link
Less detail

Simple Cross-Laminated Timber Shear Connections with Spatially Arranged Screws

https://research.thinkwood.com/en/permalink/catalogue1716
Year of Publication
2018
Topic
Connections
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)

Fire and Structural Performance of Non-Metallic Timber Connections

https://research.thinkwood.com/en/permalink/catalogue152
Year of Publication
2015
Topic
Connections
Fire
Material
LVL (Laminated Veneer Lumber)

Reassessment of the Integrity of a Partially Failed Glulam Structure

https://research.thinkwood.com/en/permalink/catalogue128
Year of Publication
2014
Topic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Roofs

Nonlinear Numerical Modelling of FRP Reinforced Glued Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue73
Year of Publication
2013
Topic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams

10 records – page 1 of 1.