Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Moment-Resisting Performance of Residential Portal Frame Constructed with Self-Tapping Screws

https://research.thinkwood.com/en/permalink/catalogue1582
Year of Publication
2016
Topic
Mechanical Properties
Connections
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Author
Yeh, Min-Chyuan
Lin, Yu-Li
Huang, Gien-Ping
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Topic
Mechanical Properties
Connections
Keywords
Portal Frames
Japanese Cedar
Moment-Resisting
Lateral Load
Aluminum Connectors
Self-Tapping Screws
Shear Strength
Shear Deformation
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1799-1806
Summary
Glulam members which are manufactured with Japanese cedar plantation timber are constructed into a box type of portal frames to investigate the moment-resisting performance when subjected to a lateral load. The joints of the frame are connected using aluminium connectors and self-tapping screw fasteners, and the placement of fasteners on the connection are arranged into three patterns. The loading protocol is applied laterally in seven cyclic stages for the racking test. The maximum lateral load of 51.4 kN is attained for the portal frame fastened using self-tapping screws arranged in square pattern, followed by single circular pattern and double circular pattern. Resulted dissipated energy obtained from the portal frame with square pattern placement is 1224.2 kNmm during the cyclic loading stages, higher than the other fastener arrangement by 20%. The allowable shear strength of the box-type portal frame is decided by the load corresponding to the shear deformation of 1/120 radian.
Online Access
Free
Resource Link
Less detail

Block Shear Failure Mode of Axially Loaded Groups of Screws

https://research.thinkwood.com/en/permalink/catalogue1512
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Solid-sawn Heavy Timber
Author
Mahlknecht, Ursula
Brandner, Reinhard
Augustin, Manfred
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Solid-sawn Heavy Timber
Topic
Connections
Mechanical Properties
Keywords
Self-Tapping Screws
Block Shear Model
Stiffness
Strength
Bending Stresses
Axially-Loaded
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 362-371
Summary
Self-tapping screws are efficient and flexible fasteners, applicable for many types of connections. Investigations on axially loaded groups of screws pointed out, that small spacing between the screws lead to block shear failure mode. So far, block and plug shear failure mode are only analysed for laterally loaded fasteners. Corresponding models cannot be simple transferred to primary axially loaded screws, because of their load insertion continuously along the effective thread featuring a thread-fibre angle perpendicular or with an angle to grain. Results gained by means of two different test configurations, with constant 90° thread-fibre angle but different configurations of group of screws and support conditions are presented. A block shear model is presented, and for mean values for stiffness and strength properties as model parameters are discussed together with values for parameters related to the force distribution over the effective thread length for the first test configuration. Agreement between model and test results was found on a conservative basis. As outlook, considerations of additional bending stresses as well as parameter optimisation are seen as prerequisites and next steps for further model improvement and practicality.
Online Access
Free
Resource Link
Less detail

Shear Resistance and Failure Modes of Edgewise Multiple Tab-and-Slot Joint (MTSJ) Connection with Dovetail Design for Thin LVL Spruce Plywood Kerto-Q Panels

https://research.thinkwood.com/en/permalink/catalogue1563
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Author
Dedijer, Mira
Roche, Stéphane
Weinand, Yves
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Topic
Connections
Mechanical Properties
Keywords
Geometry
Multiple Tab-and-Slot Joints
Shear Test
Finger Joint
Failure Modes
Shear Strength
Shear Stiffness
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1548-1555
Summary
The objective of this study is to experimentally analyse effects of geometry variations of Multiple Tab and Slot Joint (MTSJ) connection with dovetail design on shear mechanical behaviour. Direct shear test was performed on angular ( = 90° ) MTSJ connection made of Kerto-Q 21mm-thick spruce plywood laminated veneer lumber (LVL) panels. Connection was examined in its configuration of three tabs/slots per edge. Nine different geometries of MTSJ connection were tested. In order to provide better understanding of mechanical behaviour of the connection, results were compared with finger joint (F) connection. Two characteristic failure modes were observed. Influence of three theta angles which define geometry of MTSJ connection was analysed concerning shear strength and stiffness. Connection showed very ductile shear behaviour with relatively high stiffness. It has been shown that by increasing q 3 angle above 30°, shear strength decreases. On the other hand, the highest influence on shear stiffness is due to q 2 and q 3 rotations.
Online Access
Free
Resource Link
Less detail

Performance of Self-Tapping Screws and Threaded Steel Rods in Shear Reinforcement of Glulam Beams

https://research.thinkwood.com/en/permalink/catalogue1628
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Jockwer, Robert
Steiger, René
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Connections
Mechanical Properties
Keywords
Norway Spruce
Reinforcement
Self-Tapping Screws
Threaded Steel Rod
Stiffness
Strength
Load Carrying Capacity
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2813-2822
Summary
Norway spruce glulam beams with artificial horizontal slits of different length and depth were reinforced using self-tapping screws and threaded steel rods in order to restore their load-carrying capacity and stiffness. The study aimed at evaluating the effects of strength and stiffness of the applied reinforcing elements on the load-carrying capacity and stiffness of glulam beams after retrofitting. Self-tapping screws and threaded steel rods of different diameter have been evaluated in the study and different numbers of reinforcing elements have been applied. Shear failure of the beams with artificial slits of different depth was provoked in loading cycles with stepwise installation of the reinforcing elements in the beam parts failed in the preceding test. The reinforcing effect of the tested self-tapping screws and threaded steel rods reached and partly exceeded the estimated level calculated with selected analytical models. Unfavourable structural behaviour arose in some cases from crack opening during installation of the rods causing a very low initial stiffness. Comparison of test results to calculations of stiffness and load-carrying capacity of the reinforced beams applying the -method, the shear analogy method and a truss model revealed that the -method and the shear analogy method provided the best estimates of strength / stiffness of the reinforced beams.
Online Access
Free
Resource Link
Less detail

Connections with Threaded Rods in Moment Resisting Frames

https://research.thinkwood.com/en/permalink/catalogue1495
Year of Publication
2016
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
Application
Frames
Author
Arne Malo, Kjell
Stamatopoulos, Haris
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Frames
Topic
Mechanical Properties
Connections
Keywords
Moment Resistance
Threaded Rods
Beam Column Connection
Rotational Stiffness
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 200-208
Summary
Building owners often state requirements that new buildings shall have open and flexible architecture in order to allow flexible use and future changes. A way to improve timber buildings in that direction is to increase the stiffness of the connections between horizontal and vertical members of the structural systems. This paper presents some numerical and analytical considerations with respect to the stiffness requirements for moment resisting timber connections. It also presents experimental tests and results for a moment resisting connection with inclined threaded rods installed in predrilled holes.
Online Access
Free
Resource Link
Less detail

Experimental Testing of Wood-Steel-Wood Moment-Resisting Bolted Connections

https://research.thinkwood.com/en/permalink/catalogue1735
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Author
Salem, Sam
Petrycki, Adam
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Topic
Connections
Mechanical Properties
Keywords
Moment-Resisting
Bending
T-Stub
Moment Capacity
Bolts
Brittle
Failure Modes
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4793-4800
Summary
The outcomes of an experimental study aimed to investigate the structural behaviour of wood-steel-wood glulam frame moment-resisting connections that were subjected to static bending are presented in this paper. Each frame test assembly was consisted of two glulam beams simply supported at their far ends and were connected to an inversely-loaded...
Online Access
Free
Resource Link
Less detail

An Innovative Hybrid Timber Structure in Japan: Beam-to-Beam Moment Resisting Connection

https://research.thinkwood.com/en/permalink/catalogue1581
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Kusumoto, Shigeharu
Shioya, Shinichi
Kawabe, Ryosuke
Inomoto, Kotaro
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Connections
Mechanical Properties
Keywords
Steel Bars
Epoxy
Beam-to-Beam
Four Point Bending Test
Short-term
Long-term
Ductility
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1791-1798
Summary
Hybrid composite glulam timber reinforced using deformed steel bars and epoxy resin adhesive (RGTSB), was significantly developed in Kagoshima University. In this paper, a beam-to-beam connection for RGTSB and experimental data on the connection are presented. Two 2:3-scaled simply-supported beams under four-point flexural bending in short-term loading, connection elements under short and long-term tension loading were tested. The connection for RGTSB beam performed on bending behaviour such as non-connection RGTSB beam, especially better on ductility.
Online Access
Free
Resource Link
Less detail

Development of a Heavy Timber Moment-Resisting Frame with Ductile Steel Links

https://research.thinkwood.com/en/permalink/catalogue1657
Year of Publication
2016
Topic
Connections
Mechanical Properties
Seismic
Material
Solid-sawn Heavy Timber
Application
Frames
Author
Gohlich, Ryan
Erochko, Jeffrey
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Solid-sawn Heavy Timber
Application
Frames
Topic
Connections
Mechanical Properties
Seismic
Keywords
Mid-Rise
Self-Tapping Screws
Moment-Resisting
Strength
Stiffness
Ductility
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3571-3580
Summary
To improve the seismic performance of mid-rise heavy timber moment-resisting frames, a hybrid timbersteel moment-resisting connection was developed that incorporates specially detailed replaceable steel yielding link elements fastened to timber beams and columns using self-tapping screws (STS). Performance of the connection was verified using four 2/3 scale experimental tests. The connection reached a moment of 142 kN m at the column face while reaching a storey drift angle of 0.05 rad. Two specimens utilizing a dogbone detail in the steel link avoided fracture of the link, while two specimens absent of the dogbone detail underwent brittle failure at 0.05 rad drift. All four test specimens met the acceptance criteria in the AISC 341-10 provisions for steel moment frames. The STS connections exhibited high strength and stiffness, and all timber members and self-tapping screw connections remained elastic. The results of the experimental program indicated that this hybrid connection is capable of achieving a ductility factor similar to that of a steel-only moment-resisting connection. This research suggests that the use of high ductility factors in the design of timber systems that use the proposed hybrid connection would be appropriate, thus lowering seismic design base shears and increasing structure economy.
Online Access
Free
Resource Link
Less detail

Moment Resisting Frames and Connections Using Threaded Rods in Beam-to-Column Timber Joints

https://research.thinkwood.com/en/permalink/catalogue2001
Year of Publication
2018
Topic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Wood Building Systems

Moment Resistance of Post-And-Beam Joints with Concealed Metallic Connectors

https://research.thinkwood.com/en/permalink/catalogue621
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Humbert, Jérôme
Lee, Sang-Joon
Park, Joo-Saeng
Park, Moon-Jae
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Connections
Mechanical Properties
Keywords
Moment Resistance
Post and Beam
Joints
Metallic Connectors
Monotonic
Reverse Cyclic Loading
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
This paper presents a study on the moment resistance of post-and-beam joints with concealed metallic connectors aimed at replacing in a more modern design the wood-wood joints of traditional Korean Hanok timber houses. Several variations of the design of the connectors are investigated to optimize the moment resistance of the joints. Experimental tests are conducted under monotonic and reversed cyclic loading. The performance of the joint is evaluated in terms of peak moment resistance, as well as ductility and energy dissipation. Results show that optimization in the design can improve the moment resistance of the joint while preventing the brittle wood fracture and favoring a more ductile plasticizing of the connector, for the benefit of safety.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.