Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Experimental Investigation of Flexural Behavior of Glulam Beams Reinforced with Different Bonding Surface Materials

https://research.thinkwood.com/en/permalink/catalogue1312
Year of Publication
2018
Topic
Mechanical Properties
Connections
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Uzel, Murat
Togay, Abdullah
Anil, Özgür
Sögütlü, Cevdet
Publisher
ScienceDirect
Year of Publication
2018
Country of Publication
Netherlands
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Connections
Keywords
Epoxy
Polyurethane
Adhesives
Load-Displacement
Ultimate Load Capacity
Ductility
Stiffness
Energy Dissipation
Failure Mechanisms
Language
English
Research Status
Complete
Series
Construction and Building Materials
Summary
In this study, flexuralbehaviors of glue laminated timber beams manufactured from Pinussylvestristree were investigated by comparing the results with those of massive timber beams. The main variables considered in the study were number of laminations, types of adhesive materials and reinforcement nets used in the lamination surfaces. In scope of the experimental study, glue laminated beams with 5 and 3 lamination layers were manufactured with 90 x 90 mm beam sections. In the lamination process epoxy and polyurethane glue were used. Morever, in order to improve the bond strength at the lamination surface, aluminium, fiberglass and steel wire nets were used at the lamination surfaces. Load–displacement responses, ultimate capacities, ductility ratios, initial stiffness, energy dissipation capacities and failure mechanisms of glue laminated beams were compared with those of massive beams. It was observed that the general bending responses of glue laminated beams were better than those of massive beams. In addition to that the use of reinforcement nets at the lamination surfaces increased the ultimate load capacities of the tested beams. The highest ultimate load capacities were oberved from the tests of glue laminated beams manufactured using five laminated layers and retrofitted with polyurethane glue using steel wire reinforcement nets, in the direction normal to the lamination surface. Finally, the finite element simulations of some test specimens were performed to observe the accuracy of finite element technology in the estimation of ultimate capacities of glue laminated timber beams.
Online Access
Free
Resource Link
Less detail

Embedment Strength of Cross-Laminated Timber for Smooth Dowel-type Fasteners

https://research.thinkwood.com/en/permalink/catalogue2118
Year of Publication
2019
Topic
Connections
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Dong, Weiqun
Li, Qiao
Zhang, Hao
Wang, Zhiqiang
Zhou, Jianhui
Gong, Meng
Year of Publication
2019
Country of Publication
France
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Design and Systems
Keywords
Fasteners
Embedment Strength
Failure Modes
Embedment Tests
Dowel-Type Connections
Language
English
Conference
International Conference on Advances in Civil Engineering and Materials
Research Status
Complete
Series
MATEC Web of Conferences
Online Access
Free
Resource Link
Less detail

Behavior of Timber-Concrete Composite Beams with Two Types of Steel Dowel Connectors

https://research.thinkwood.com/en/permalink/catalogue1996
Year of Publication
2018
Topic
Connections
Mechanical Properties
Material
Timber-Concrete Composite
Application
Beams
Author
Molina, Julio
Calil Junior, Carlito
Year of Publication
2018
Country of Publication
South Korea
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Beams
Topic
Connections
Mechanical Properties
Keywords
Steel Dowels
Strength
Stiffness
Mohler Model
Shear Tests
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Direct Displacement-Based Seismic Design of Timber Structures with Dowel-Type Fastener Connections

https://research.thinkwood.com/en/permalink/catalogue1899
Year of Publication
2012
Topic
Seismic
Connections
Application
Frames
Walls
Wood Building Systems
Author
Loss, Cristiano
Piazza, Maurizio
Zonta, Daniele
Publisher
Sociedade Portuguesa de Engenharia Sismica (SPES)
Year of Publication
2012
Country of Publication
Portugal
Format
Conference Paper
Application
Frames
Walls
Wood Building Systems
Topic
Seismic
Connections
Keywords
Direct Displacement-Based Design
Equivalent Viscous Damping
Dowel Type Fastener
Language
English
Conference
15WCEE
Research Status
Complete
Notes
September 24-28, 2012, Lisbon, Portugal
ISBN
978-1-63439-651-6
Online Access
Free
Resource Link
Less detail

Analytical Model to Evaluate the Equivalent Viscous Damping of Timber Structures with Dowel-Type Fastener Connections

https://research.thinkwood.com/en/permalink/catalogue1893
Year of Publication
2012
Topic
Connections
Application
Frames

Bending Tests on Glulam-CLT Beams connected with Double-Sided Punched Metal Plate Fasteners and Inclined Screws

https://research.thinkwood.com/en/permalink/catalogue320
Year of Publication
2015
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Beams
Floors
Author
Jacquier, Nicolas
Organization
Luleå University of Technology
Year of Publication
2015
Country of Publication
Sweden
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Beams
Floors
Topic
Connections
Mechanical Properties
Keywords
Bending Test
Shear Connections
Double-sided Punched Metal Plate
Inclined Screws
Language
English
Research Status
Complete
Summary
This report presents bending tests performed on composite beams made from glulam beams and cross laminated timber (CLT) panels. The composite beam, with a T-cross section, represents a section of a floor element in a multi-storey CLT construction system. The shear connections used were made either of doublesided punched metal plate fasteners, either of inclined screws, or of a combination of both fastener types. The screws are used to secure the shear connection with double-sided nail plates with respect to possible separation forces between the glulam and the CLT. An additional test with a screw glued connection was made for comparison as the upper bound case in terms of composite action. The results show the beams with double-sided nail plates (with or without screws) achieved a very high level of composite action and an overall satisfactory behaviour. Almost full composite action was achieved for the screw-glued composite beam. A detailed design example of the beam element according to the Eurocode 5 and Finnish National Annex is presented.
Online Access
Free
Resource Link
Less detail

Dowelled Timber Connections with Internal Members of Densified Veneer Wood and Fibre-Reinforced Polymer Dowels

https://research.thinkwood.com/en/permalink/catalogue1498
Year of Publication
2016
Topic
Mechanical Properties
Connections
Material
LVL (Laminated Veneer Lumber)
Author
Palma, Pedro
Kobel, Peter
Minor, Alexander
Frangi, Andrea
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Topic
Mechanical Properties
Connections
Keywords
Timber-to-Timber
Densified Veneer Wood
Fibre-Reinforced Polymer
Dowel Type Fastener
Embedment Tests
Bending Test
Shear Test
Full Scale
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 236-243
Summary
The mechanical behaviour of timber-to-timber connections with internal panels of densified veneer wood (DVW) and fibre-reinforced polymer (FRP) dowels was experimentally assessed and a design method, based on EN 1995-1-1, was developed. Embedment tests on DVW plates and bending/shear tests on FRP dowels were performed to characterise these components, followed by full-scale tests of connections assembled with these materials. The results show that these connections exhibit a mechanical behaviour compatible with structural applications, regarding both load-carrying capacity and ductility. The proposed design model is based on EN 1995-1-1’s expressions for connections with dowel-type fasteners and gives good predictions of the experimental load-carrying capacities.
Online Access
Free
Resource Link
Less detail

Splitting Strength of Small Dowel-Type Timber Connections: Rivet Joint Loaded Perpendicular to Grain

https://research.thinkwood.com/en/permalink/catalogue580
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Author
Zarnani, Pouyan
Quenneville, Pierre
Publisher
American Society of Civil Engineers
Year of Publication
2014
Country of Publication
United States
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Topic
Connections
Mechanical Properties
Keywords
Timber Rivets
Width Splitting
Dowel Type Fastener
Connection Splitting Capacity
Language
English
Research Status
Complete
Series
Journal of Structural Engineering
Summary
The existing models for the prediction of the splitting failure of dowel-type connections loaded perpendicular to grain are determined generally based on crack growth of the entire member cross-section. These models can be appropriate for stocky or rigid fasteners installed through the full thickness of the wood member. However, for slender dowel-type fasteners such as timber rivets, particularly when the penetration depth of the fastener does not cover the whole member thickness, the crack formation is different. Observations from current tests in thick members show that the crack growth across the grain occurs to a depth corresponding to the effective embedment depth of the fastener and propagates along the grain until it reaches its unstable condition. The design method presented in this paper to predict the connection splitting capacity takes into account the observed two possible failure modes of wood: either partial or full width splitting. In the proposed method, the effect of geometry parameters such as connection width and length, fastener penetration depth, loaded and unloaded edge distances, end distance, and member thickness as observed by others are considered. Results of the tests undertaken with laminated veneer lumber (LVL) and glulam manufactured from New Zealand Radiata Pine (RP) and data available from literature confirm the validity of this new method and show that the proposed design approach can be used advantageously in comparison to other existing models for timber rivet connections under transverse loading.
Online Access
Free
Resource Link
Less detail

Group Tear-Out in Small-Dowel-Type Timber Connections: Brittle and Mixed Failure Modes of Multinail Joints

https://research.thinkwood.com/en/permalink/catalogue579
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Author
Zarnani, Pouyan
Quenneville, Pierre
Publisher
American Society of Civil Engineers
Year of Publication
2014
Country of Publication
United States
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Topic
Connections
Mechanical Properties
Keywords
dowel-type connections
Load Carrying Capacity
Brittle Failure
Failure Modes
Language
English
Research Status
Complete
Series
Journal of Structural Engineering
Summary
In existing wood strength prediction models for parallel to grain failure in timber connections using dowel-type fasteners, different methods consider the minimum, maximum, or summation of the tensile and shear capacities of the failed wood block planes. It is postulated that these methods are not appropriate since the stiffness of the adjacent wood loading the tensile and shear planes differs, and this leads to uneven load distribution among the resisting planes. A closed-form analytical method to determine the load-carrying capacity of wood under parallel-to-grain loading in small-dowel-type connections in timber products is thus proposed. For the wood strength, the stiffness of the adjacent loading volumes and strength of the failure planes subjected to nonuniform shear and tension stresses are considered. The effective wood thickness for the brittle failure mode is derived and related to the elastic deformation of the fastener. A mixed failure mode is also defined (a mixture of brittle and ductile) and depends on the governing ductile failure mode of the fastener. To help the designer, an algorithm is presented that allows the designer to calculate the resistances associated with predictions of the different possible brittle, ductile, and mixed failure modes. The proposed stiffness-based model has already been verified in brittle and mixed failure modes of timber rivet connections. In the research reported in this paper, an extended application is proposed for other small-dowel-type fasteners such as nails and screws. Results of nailed joint tests on laminated veneer lumber (LVL) and the test data available from the literature on glulam confirm the validity of this new method, and show that it can be used as a design provision for wood load-carrying capacity prediction of small-dowel-type timber connections.
Online Access
Free
Resource Link
Less detail

Modified Foundation Modelling of Dowel Embedment in Glulam Connections

https://research.thinkwood.com/en/permalink/catalogue584
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Karagiannis, Vasileios
MÁLAGA-CHUQUITAYPE, Christian
Elghazouli, Ahmed
Publisher
ScienceDirect
Year of Publication
2016
Country of Publication
Netherlands
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Douglas-Fir
Dowels
Finite Element
Spruce
Embedment Behaviour
Strain Concentrations
Deformation
Modified Foundation Models
Language
English
Research Status
Complete
Series
Construction and Building Materials
Summary
This paper examines the embedment behaviour of single-dowel connections in Scandinavian Spruce Glulam by means of experimental and numerical investigations. First, the experimental results of a series of single-dowel tests on samples of different geometry and grain directions are presented. The evolution of local strain concentrations around the fastener at increasing levels of bearing deformation, is reported in detail by means of non-contact field strain measurements and its implications are discussed. Detailed finite element simulations are also carried out and subsequently employed to highlight the main features of the response of doweled connections in glulam. A foundation model, initially developed for Douglas-fir (Pseudotsuga menziesii) timber, is upgraded and adapted for Scandinavian Spruce Glulam (Picea abies) elements subjected to loads acting perpendicular and parallel to the grain direction. The proposed model is based on the definition of equivalent material parameters for the crushing region around the dowel hole. To this end, relationships for the estimation of material characteristics as a function of the crushing volume are suggested. The validity and accuracy of the proposed modified foundation models are examined against the experimental results. It is shown the improved foundation model is able to simulate the embedment stiffness, capacity and inelastic behaviour of single-dowel connections on glulam with reasonable accuracy for strains of up to 8 %, and can therefore be used for design and assessment purposes.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.