Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Passive Cross Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue24
Year of Publication
2013
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Passive House

Energy and Environmental Performance of Multi-Story Apartment Buildings Built in Timber Construction Using Passive House Principles

https://research.thinkwood.com/en/permalink/catalogue1203
Year of Publication
2013
Topic
Energy Performance
Environmental Impact
Cost
Application
Passive House
Author
Kildsgaard, Ivana
Jarnehammar, Anna
Widheden, Anna
Wall, Maria
Publisher
MDPI
Year of Publication
2013
Country of Publication
Switzerland
Format
Journal Article
Application
Passive House
Topic
Energy Performance
Environmental Impact
Cost
Keywords
Energy Efficiency
Europe
Multi-Story
Language
English
Research Status
Complete
Series
Buildings
ISSN
2075-5309
Summary
This paper presents energy and environmental performance analyses, a study of summer indoor temperatures and occupant behavior for an eight story apartment building, with the goal to combine high energy efficiency with low environmental impact, at a reasonable cost. Southern Portvakten building is built with prefabricated timber elements...
Online Access
Free
Resource Link
Less detail

Life Cycle Assessment of a Residential Building with Cross-laminated Timber Structure in Granada-Spain

https://research.thinkwood.com/en/permalink/catalogue2408
Year of Publication
2019
Topic
Energy Performance
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Vidal, Rosario
Sánchez-Pantoja Belenguer, NúriaOrcid
Martínez Montes, German
Publisher
Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc) (CSIC)
Year of Publication
2019
Country of Publication
Spain
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Environmental Impact
Keywords
Residential Buildings
Life-Cycle Assessment
Energy Efficiency
Construction
Language
English
Research Status
Complete
Series
Informes de la Construcción
Online Access
Free
Resource Link
Less detail

Life Cycle Assessment of a Cross Laminated Timber Building

https://research.thinkwood.com/en/permalink/catalogue66
Year of Publication
2013
Topic
Environmental Impact
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Comparison of Environmental Performance of a Five-Storey Building Built with Cross-Laminated Timber and Concrete

https://research.thinkwood.com/en/permalink/catalogue65
Year of Publication
2012
Topic
Energy Performance
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

A Comparison of the Energy Saving and Carbon Reduction Performance between Reinforced Concrete and Cross-Laminated Timber Structures in Residential Buildings in the Severe Cold Region of China

https://research.thinkwood.com/en/permalink/catalogue1207
Year of Publication
2017
Topic
Energy Performance
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Guo, Haibo
Liu, Ying
Meng, Yiping
Huang, Haoyu
Sun, Cheng
Shao, Yu
Publisher
MDPI
Year of Publication
2017
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Environmental Impact
Keywords
Energy Consumption
Carbon Emissions
Residential
Severe Cold Regions
Simulation
Reinforced Concrete
Life-Cycle Assessment
Language
English
Research Status
Complete
Series
Sustainability
ISSN
2071-1050
Summary
This paper aims to investigate the energy saving and carbon reduction performance of cross-laminated timber residential buildings in the severe cold region of China through a computational simulation approach. The authors selected Harbin as the simulation environment, designed reference residential...
Online Access
Free
Resource Link
Less detail

A Comparative Cradle-To-Gate Life Cycle Assessment of Mid-Rise Office Building Construction Alternatives: Laminated Timber or Reinforced Concrete

https://research.thinkwood.com/en/permalink/catalogue52
Year of Publication
2012
Topic
Energy Performance
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
General Application
Author
Robertson, Adam
Lam, Frank
Cole, Raymond
Publisher
MDPI
Year of Publication
2012
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
General Application
Topic
Energy Performance
Environmental Impact
Keywords
Concrete
Embodied Carbon
Life-Cycle Assessment
Mid-Rise
National Building Code of Canada
NBCC
North America
Office Buildings
Language
English
Research Status
Complete
Series
Buildings
ISSN
2075-5309
Summary
The objective of this project was to quantify and compare the environmental impacts associated with alternative designs for a typical North American mid-rise office building. Two scenarios were considered; a traditional cast-in-place, reinforced concrete frame and a laminated timber hybrid design, which utilized engineered wood products (cross-laminated timber (CLT) and glulam). The boundary of the quantitative analysis was cradle-to-construction site gate and encompassed the structural support system and the building enclosure. Floor plans, elevations, material quantities, and structural loads associated with a five-storey concrete-framed building design were obtained from issued-for-construction drawings. A functionally equivalent, laminated timber hybrid design was conceived, based on Canadian Building Code requirements. Design values for locally produced CLT panels were established from in-house material testing. Primary data collected from a pilot-scale manufacturing facility was used to develop the life cycle inventory for CLT, whereas secondary sources were referenced for other construction materials. The TRACI characterization methodology was employed to translate inventory flows into impact indicators. The results indicated that the laminated timber building design offered a lower environmental impact in 10 of 11 assessment categories. The cradle-to-gate process energy was found to be nearly identical in both design scenarios (3.5 GJ/m2), whereas the cumulative embodied energy (feedstock plus process) of construction materials was estimated to be 8.2 and 4.6 GJ/m2 for the timber and concrete designs, respectively; which indicated an increased availability of readily accessible potential energy stored within the building materials of the timber alternative.
Online Access
Free
Resource Link
Less detail

Wood Lightweight Concrete Composites Structural Elements: Ecological Impact

https://research.thinkwood.com/en/permalink/catalogue1521
Year of Publication
2016
Topic
Energy Performance
Environmental Impact
Material
Timber-Concrete Composite
Application
Hybrid Building Systems
Author
Fadai, Alireza
Borska, Andrea
Winter, Wolfgang
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Hybrid Building Systems
Topic
Energy Performance
Environmental Impact
Keywords
Energy Efficiency
Ecological Impact
Lightweight Concrete
Europe
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 623-631
Summary
Within several research projects and with the aim to optimize energy efficiency and ecological characteristics of structural building components the Department of Structural Design and Timber Engineering (ITI) at the Vienna University of Technology (VUT) developed several wood-based composite systems, which combine timber...
Online Access
Free
Resource Link
Less detail

Wood Innovation and Design Centre Whole Building Life Cycle Assessment

https://research.thinkwood.com/en/permalink/catalogue236
Year of Publication
2014
Topic
Environmental Impact
Energy Performance
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
Grann, Blane
Organization
FPInnovations
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Environmental Impact
Energy Performance
Keywords
Canada
Life-Cycle Assessment
Multi-Storey
Language
English
Research Status
Complete
Summary
This document provides supporting information for LEED accreditation of the Wood Innovation and Design Centre (WIDC) in Prince George British Columbia. In particular, this document supports materials and resources pilot credit 63 - whole building life cycle...
Online Access
Free
Resource Link
Less detail

Environmental Performance of Timber Constructions Located in Highly Utilised Area - Based on Realised Buildings Made of Sawn Timber or CLT

https://research.thinkwood.com/en/permalink/catalogue1642
Year of Publication
2016
Topic
Environmental Impact
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Yeh, Yu-hsiang
Chiao, Chih-kang
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Energy Performance
Keywords
Life-Cycle Assessment
Multi-Storey
Reinforced Concrete
Steel
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3253-3260
Summary
The purpose of this research is to evaluate the environmental performance of various timber constructions that have been realised within intensively utilised area in recent years. The appraisal is carried out by means of life cycle assessment (LCA) and covers different timber constructions, mainly the multi-storey building. The ultimate goal is to compare their...
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.