Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Floor Diaphragms in Multi-Storey Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue71
Year of Publication
2016
Topic
Design and Systems
Seismic
Material
Light Frame (Lumber+Panels)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
CLT (Cross-Laminated Timber)
Application
Floors
Author
Moroder, Daniel
Organization
University of Canterbury
Year of Publication
2016
Country of Publication
New Zealand
Format
Thesis
Material
Light Frame (Lumber+Panels)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Design and Systems
Seismic
Keywords
Diaphragms
Lateral Loads
Multi-Storey
Equivalent Truss Method
Pres-Lam
Language
English
Research Status
Complete
Summary
This thesis studies the behaviour of diaphragms in multi-storey timber buildings by providing methods for the estimation of the diaphragm force demand, developing an Equivalent Truss Method for the analysis of timber diaphragms, and experimentally investigating the effects of displacement incompatibilities between the diaphragm and the lateral load resisting system and developing methods for their mitigation. Although shortcomings in the estimation of force demand, and in the analysis and design of concrete floor diaphragms have already been partially addressed by other researchers, the behaviour of diaphragms in modern multi-storey timber buildings in general, and in low damage Pres-Lam buildings (consisting of post-tensioned timber members) in particular is still unknown. The analysis of light timber framing and massive timber diaphragms can be successfully analysed with an Equivalent Truss Method, which is calibrated by accounting for the panel shear and fastener stiffnesses. Finally, displacement incompatibilities in frame and wall structures can be accommodated by the flexibilities of the diaphragm panels and relative connections. A design recommendations chapter summarizes all findings and allows a designer to estimate diaphragm forces, to analyse the force path in timber diaphragms and to detail the connections to allow for displacement incompatibilities in multi-storey timber buildings.
Online Access
Free
Resource Link
Less detail

Design of Floor Diaphragms in Multi-Storey Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue294
Year of Publication
2015
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Floors
Author
Moroder, Daniel
Smith, Tobias
Pampanin, Stefano
Palermo, Alessandro
Buchanan, Andrew
Year of Publication
2015
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Floors
Topic
Design and Systems
Seismic
Keywords
Diaphragms
Multi-Storey
Commercial
Lateral Loads
Equivalent Truss Method
Lateral Load Resisting System
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 10-12, 2015, Rotorua, New Zealand
Summary
This paper discusses the design of timber diaphragms, in response to the growing interest in multi-storey commercial timber structures, and the lack of guidance or regulations regarding the seismic design of timber diaphragms. Proper performance of floor diaphragms is required to transfer all lateral loads to the vertical systems that resist them, but design for earthquake loads can be more complex than design for wind loads. This paper confirms that the seismic design of a diaphragm is intimately linked to the seismic design of the whole building. Diaphragm failure, even if restricted to a limited diaphragm portion, can compromise the behaviour of the whole building. It is therefore necessary to design and detail diaphragms for all possible load paths and to evaluate their influence on the load distribution within the rest of the structure. It is strongly recommended that timber diaphragms be designed as elastic elements, by applying dynamic amplification and overstrength factors derived from the lateral load resisting system. This paper shows that some current design recommendations for plywood sheathing on light timber framing can be applied to massive wood diaphragms, but for more complex floor geometries an equivalent truss method is suggested. Diaphragm flexibility and displacement incompatibilities between the floor diaphragms and the lateral resisting systems also need to be accounted for.
Online Access
Free
Resource Link
Less detail

Design Example: Design of Stacked Multi-Storey Wood Shear Walls Using a Mechanics Based Approach

https://research.thinkwood.com/en/permalink/catalogue739
Year of Publication
2013
Topic
Design and Systems
Mechanical Properties
Seismic
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Shear Walls
Author
Newfield, Grant
Ni, Chun
Wang, Jasmine
Organization
Canadian Wood Council
FPInnovations
Year of Publication
2013
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Shear Walls
Topic
Design and Systems
Mechanical Properties
Seismic
Keywords
Codes
National Building Code of Canada
Lateral Seismic Loads
Language
English
Research Status
Complete
Summary
Figure 1 shows a floor plan and elevation along with the preliminary shear wall locations for a sixstorey wood-frame building. It is assumed some preliminary calculations have been provided to determine the approximate length of wall required to resist the lateral seismic loads. If the preliminary design could not meet the drift limit requirement using the base shear obtained based on the actual period, the shear walls should be re-designed until the drift limit requirement is satisfied.
Online Access
Free
Resource Link
Less detail

Assessment of Dynamic Characteristics of Multi-Storey Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1786
Year of Publication
2016
Topic
Acoustics and Vibration
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Hummel, Johannes
Seim, Werner
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Mechanical Properties
Seismic
Keywords
Natural Frequency
Multi-Storey
Force-Based Design
Stiffness
Deformation
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5819-5828
Summary
This paper discusses the impact of the natural frequency of multi-storey timber structures, focusing on force-based seismic design. Simplified approaches to determine the frequency of light-frame and cross-laminated timber structures are investigated. How stiffness parameters for simple two-dimensional analysis models can be derived from the different contributions of deformation...
Online Access
Free
Resource Link
Less detail

Seismic Design of Mixed CLT/Light-Frame Multi-Storey Buildings

https://research.thinkwood.com/en/permalink/catalogue1666
Year of Publication
2016
Topic
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Shear Walls
Author
Follesa, Maurizio
Fragiacomo, Massimo
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Shear Walls
Topic
Seismic
Mechanical Properties
Keywords
Multi-Storey
Q Factor
Eurocode 8
Nonlinear Time History Analysis
Dynamic Analysis
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3750-3759
Summary
This paper presents a study on the seismic design of hybrid multi-storey wood buildings made of CLT and Light-Frame shear walls acting at the same level. Within the framework of the force-based method, the aim of this study is to propose a simple formulation in order to establish the value of the q-factor of the hybrid system which could be also implemented in seismic design codes such as Eurocode 8. This was achieved by analysing the results of nonlinear dynamic (time-history) analyses performed on a four storey case-study building with different combinations of CLT and Light-Frame shear walls.
Online Access
Free
Resource Link
Less detail

Potential for Design Optimisation of a Six-Storey Lightframe Wood Building Using Linear Dynamic Analysis

https://research.thinkwood.com/en/permalink/catalogue1661
Year of Publication
2016
Topic
Mechanical Properties
Design and Systems
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Shear Walls
Author
Tremblay-Auclair, Jean-Philippe
Salenikovich, Alexander
Frenette, Caroline
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Shear Walls
Topic
Mechanical Properties
Design and Systems
Keywords
Canada
Braced Frame Model
Linear Dynamic Analysis
Mid-Rise
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3649-3656
Summary
Recently, Canadian building regulations have allowed construction of light-frame wood buildings up to six storeys. Even though equivalent static force procedure (ESFP) is generally used for the seismic design of such buildings, in cases of irregular structures and in high seismic zones a linear dynamic analysis (LDA) is required by the code. However, commercial software has not yet been adapted to the dynamic analysis of this type of structures. In this paper, a design procedure for light-frame wood shear walls using a braced frame model and LDA is proposed and the potential for design optimisation is presented for a six-storey light-frame wood building located in Quebec City in the Eastern Canada. Comparisons between the proposed LDA procedure and ESFP based on the shear distribution, overturning moments, interstorey drifts and total inelastic deflections are shown. Structural advantages of using the proposed LDA are demonstrated.
Online Access
Free
Resource Link
Less detail

Seismic Performance of Multi-Storey Timber Buildings Legnocase Building

https://research.thinkwood.com/en/permalink/catalogue375
Year of Publication
2013
Topic
Seismic
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Costa, Alfredo
Candeias, Paulo
Bartolucci, Camilla
Piazza, Maurizio
Tomasi, Roberto
Grossi, Paolo
Organization
Seismic Engineering Research Infrastructures for European Synergies
Year of Publication
2013
Country of Publication
Italy
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Seismic
Keywords
Steel Connections
Shake Table Test
Language
English
Research Status
Complete
Summary
This document reports the outcome of the seismic test on the LegnoCase building, the second in a total of four buildings included in the TIMBER BUILDINGS Project. This building is a platform frame system with sheathing assembled by means of OSB panels (PF-OSB). The goal of the tests was to assess the seismic performance of the building, panel elements and steel connectors, defined in terms of relative displacements and hold-down forces. This report presents the results of the experimental tests carried out in the LNEC 3D shaking table on a platform frame system (PSF) with sheathing assembled by means of OSB panels (PF-OSB) as part of the SERIES Project on multi-storey timber buildings. This project is coordinated by the University of Trento and involves the University of Minho and the Graz University of Technology, at LNEC, in Lisbon. The tests were carried out on June 25, 26, and 27, 2012 on a three storey real scale building.
Online Access
Free
Resource Link
Less detail

A Comparative Analysis of Three Methods Used for Calculating Deflections for Multi-Storey Wood Shearwalls

https://research.thinkwood.com/en/permalink/catalogue1719
Year of Publication
2016
Topic
Mechanical Properties
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Wood Building Systems
Author
Newfield, Grant
Wang, Jasmine
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Wood Building Systems
Topic
Mechanical Properties
Keywords
Deformation
Drifts
Stiffness
Building Period
Base Shear
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4597-4604
Summary
With the introduction of 5 and 6-storey wood structures into the National Building Code of Canada 2015, it is important that guidance be provided to engineers to ensure that a reasonable design approach can be sought in the design of taller wood structures. The purpose of this technical paper is to compare various methods for calculating building...
Online Access
Free
Resource Link
Less detail

A Mechanics Based Approach for Determining Deflections of Stacked Multi-Storey Wood Based Shear Walls

https://research.thinkwood.com/en/permalink/catalogue738
Year of Publication
2013
Topic
Mechanical Properties
Serviceability
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Shear Walls
Author
Newfield, Grant
Ni, Chun
Wang, Jasmine
Organization
Canadian Wood Council
FPInnovations
Year of Publication
2013
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Shear Walls
Topic
Mechanical Properties
Serviceability
Keywords
Multi-Storey
Deflection
Flexural Deformations
Shear
Language
English
Research Status
Complete
Summary
The 2009 edition of CSA Standard O86, Engineering Design in Wood (CSA 2009), provides an equation for determining the deflection of shear walls. It is important to note that this equation only works for a single-storey shear wall with load applied at the top of the wall. While the equation captures the shear and flexural deformations of the shear wall, it does not account for moment at the top of the wall and the cumulative effect due to rotation at the bottom of the wall, which would be expected in a multi-storey structure. In this fact sheet, a mechanics-based method for calculating deflection of a multi-storey wood-based shear wall is presented.
Online Access
Free
Resource Link
Less detail

Impact Sound Insulation in Wood Multi-Family Buildings

https://research.thinkwood.com/en/permalink/catalogue2623
Year of Publication
2012
Topic
Acoustics and Vibration
Design and Systems
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Hu, Lin
Organization
FPInnovations
Year of Publication
2012
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Design and Systems
Keywords
Mid-Rise
High-Rise
Sound Transmission
Language
English
Research Status
Complete
Summary
The number of occupant complaints received about annoying low-frequency footstep impact sound transmission through wood floor-ceiling assemblies has been increasing in proportion with the increase in the number of multi-family wood buildings built. Little work has been conducted to develop solutions to control the low-frequency footstep impact sound transmission. There are no code provisions or sound solutions in the codes. Current construction practices are based on a trial and error approach. This two-years project was conducted to remove this barrier and to successfully expand the use of wood in the multi-family and mid- to high-rise building markets. The key objective was to build a framework for the development of thorough solutions to control low-frequency footstep sound transmission through wood floor-ceiling assemblies. Field acoustic tests and case studies were conducted in collaboration with acoustics researchers, builders, developers, architects, design engineers and producers of wood building components. The field study found that: 1. With proper design of the base wood-joisted floors and sound details of the ceiling: With no topping on the floor, the floor-ceiling assembly did not provide sufficient impact sound insulation for low- to high-frequency sound components ; Use of a 13-mm thick wood composite topping along with the ceiling did not ensure satisfactory impact sound insulation; Even if there was the ceiling, use of a 38-mm thick concrete topping without a proper insulation layer to float the topping did not ensure satisfactory impact sound insulation ; A topping system having a mass over 20 kg/m2 and composed of composite panels and an insulation layer with proper thickness achieved satisfactory impact sound insulation. 2. The proper design of the base wood-joisted floors was achieved by the correct combination of floor mass and stiffness. The heaviest wood-joisted floors did not necessarily ensure satisfactory impact insulation. 3. Proper sound ceiling details were found to be achieved through: Use of two layers of gypsum board; Use of sound absorption materials filling at least 50% of the cavity ; Installation of resilient channels to the bottom of the joists through anchoring acoustic system resulted in improved impact sound insulation than directly attaching the resilient channels to the bottom of the joists. A four-task research plan was developed to thoroughly address the issue of poor low-frequency footstep impact insulation of current lightweight wood floor-ceiling assemblies and to correct prejudice against wood. The tasks include: 1) fundamental work to develop code provisions; 2) expansion of FPInnovations’ material testing laboratory to include tests to characterize the acoustic properties of materials; 3) development of control strategies; and 4) implementation. The laboratory acoustic research facility built includes a mock-up field floor-ceiling assembly with adjustable span and room height, a testing system and a building acoustic simulation software. The preliminary study on the effects of flooring, topping and underlayment on FIIC of the mock-up of the filed floor-ceiling assembly in FPInnovations’ acoustic chamber confirmed some findings from the field study. The laboratory study found that: A topping was necessary to ensure the satisfactory impact sound insulation; The topping should be floated on proper underlayment; Topping mass affects impact sound insulation of wood framed floors; A floating flooring enhanced the impact sound insulation of wood framed floors along with the floating topping. It is concluded that: 1. even if the studies only touched the tip of the iceberg of the footstep impact sound insulation of lightweight wood-joisted floor systems, the proposed solutions are promising but still need verification ; 2. with proper design of the base wood floor structure, the proper combination of flooring, and sound ceiling details along with proper installation, the lightweight wood floor-ceiling assembly can achieve satisfactory impact sound insulation ; 3. this study establishes a framework for thoroughly solving low-frequency footstep impact sound insulation problem in lightweight wood-joisted floor systems. Solutions will be developed in the next phase of this study as planned and the study will be conducted under NRCan Transformative Technology program with a project dedicated to “Serviceability of next generation wood building systems”.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.