Skip header and navigation

10 records – page 1 of 1.

Solution for Mid-Rise Wood Construction: Full-Scale Standard Fire Resistance Tests of Wall Assemblies for Use in Lower Storeys of Mid-Rise Buildings

https://research.thinkwood.com/en/permalink/catalogue346
Year of Publication
2014
Topic
Design and Systems
Fire
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Walls
Author
Lafrance, Pier-Simon
Berzins, Robert
Leroux, Patrice
Su, Joseph
Lougheed, Gary
Bénichou, Noureddine
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Walls
Topic
Design and Systems
Fire
Keywords
Mid-Rise
Full Scale
Language
English
Research Status
Complete
Summary
A research project, Wood and Wood-Hybrid Midrise Buildings, was undertaken to develop information to be used as the basis for alternative/acceptable solutions for mid-rise construction using wood structural elements. The effectiveness of the encapsulation approach in limiting the involvement of wood structural materials in fires was demonstrated in this research project through bench-, intermediate- and full-scale fire experiments. These results for encapsulated lightweight wood-frame (LWF) systems and encapsulated cross-laminated timber (CLT) systems are documented in a series of reports [3, 4, 5, 6]. In addition to developing the encapsulation approach for protecting the wood structural materials to meet the above code intent, research was undertaken to examine standard fire resistance of encapsulated wood structural assemblies for use in mid-rise wood/timber buildings. One of the major differences between structural LWF assemblies used in mid-rise wood buildings (5-6 storeys) and low-rise wood buildings (= 4 stories) is the wall assemblies for the lower storeys. For mid-rise wood buildings, loadbearing wall assemblies on the lower storeys have to be designed to resist higher axial loads due to the self-weight of the upper storeys, which often result in the need for larger-size stud members and/or a greater number of studs, and higher lateral loads in case of seismic events or wind loads, which often requires the use of wood shear panels within the wall assembly. These wall assemblies very often will need to meet standard fire resistance requirements, and therefore, information regarding their standard fire-resistance ratings should be developed. This report documents the results of fullscale furnace tests conducted to develop standard fire-resistance ratings of encapsulated LWF assemblies for use in mid-rise applications.
Online Access
Free
Resource Link
Less detail

Building Envelope Summary: Hygrothermal Assessment of Systems for Mid-Rise Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue250
Year of Publication
2014
Topic
Design and Systems
Fire
Moisture
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Abdulghani, Khaled
Cornick, Steve
Di Lenardo, Bruno
Ganapathy, Gnanamurugan
Lacasse, Michael
Maref, Wahid
Moore, Travis
Mukhopadhyaya, Phalguni
Nicholls, Mike
Saber, Hamed
Swinton, Michael
van Reenen, David
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Design and Systems
Fire
Moisture
Keywords
National Building Code of Canada
Mid-Rise
Building Envelopes
Language
English
Research Status
Complete
Summary
The role of the building envelope research team in this project was to assess whether midrise wood-frame (LWF) and cross-laminated timber (CLT) building envelope solutions developed by the fire research team to meet the fire provisions of the National Building Code (NBC) 2010 Part 3 Fire Protection, would also meet the NBC Part 5 Environmental Separation requirements relating to the protection of the building envelope from excessive moisture and water accumulation. As well, these wood-based mid-rise envelope solutions were to be assessed for their ability to meet Part 3 Building Envelope of the National Energy Code for Buildings (NECB) 2011. Requirements relating to heat, air, moisture, and precipitation (HAMP) control by the building envelope are included in Part 5 Environmental Separation of the NBC 2010. Part 5 addresses all building types and occupancies referred to in Part 3, but unlike requirements for fire protection, this section of the code was written more recently and is generic, including requirements that are more objective-oriented rather than prescriptive requirements pegged to specific constructions systems. The investigated methodologies developed and adapted for this study took those code characteristics into account.
Online Access
Free
Resource Link
Less detail

Fire Endurance of Cross-Laminated Timber Floor and Wall Assemblies for Tall Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue1094
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Author
Su, Joseph
Roy-Poirier, Audrey
Leroux, Patrice
Lafrance, Pier-Simon
Gratton, Karl
Gibbs, Eric
Berzins, Robert
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Topic
Fire
Keywords
Tall Wood
Full Scale
Fiberglass Wool
Encapsulated
Type X Gypsum Board
Fire Endurance Tests
Language
English
Research Status
Complete
Summary
Standard fire endurance tests were performed on a full-scale floor assembly and a full-scale wall assembly constructed with cross-laminated timber (CLT) as the main structural element. The full-scale floor assembly consisted of CLT panels encapsulated with fiberglass wool and a single layer of 15.9 mm thick Type X gypsum board on the exposed side and with two layers of 12.7 mm thick cement board on the unexposed side. The full-scale wall assembly was constructed from CLT panels encapsulated with two layers of 15.9 mm thick Type X gypsum board on both faces. Nine thermocouples were installed on the unexposed face of both assemblies to monitor the temperature rise throughout the test and nine deflection gauges were installed on each assembly to monitor deformations. The superimposed load applied on the floor assembly was 9.4 kN/m² and the load imposed on the wall assembly was 449 kN/m. The fire endurance period of the full-scale floor assembly was 128 minutes and that of the full-scale wall assembly 219 minutes. Both the full-scale floor assembly and the full-scale wall assembly failed structurally afterwards under the applied loading. No hose stream tests were carried out on the fullscale floor and wall assemblies.
Online Access
Free
Resource Link
Less detail

Solution for Mid-Rise Wood Construction: Apartment Fire Test with Encapsulated Lightweight Wood Frame Construction

https://research.thinkwood.com/en/permalink/catalogue344
Year of Publication
2014
Topic
Fire
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Taber, Bruce
Lougheed, Gary
Su, Joseph
Bénichou, Noureddine
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Fire
Keywords
Mid-Rise
Encapsulation
Language
English
Research Status
Complete
Summary
A research project, Wood and Wood-Hybrid Midrise Buildings, was undertaken to develop information to be used as the basis for alternative/acceptable solutions for mid-rise construction using wood structural elements. As part of this project, four large-scale fire experiments were conducted to evaluate the fire performance of two forms of encapsulated combustible structural wood systems, a lightweight wood-frame (LWF) system (2 experiments [3]) and a crosslaminated timber (CLT) system (1 experiment [4]). The fourth experiment [5] involved a test structure constructed using a steel frame system described below. Each experiment involved construction of a test set-up of an unsprinklered full-size apartment unit, intended to represent a portion of a mid-rise (e.g. six-storey) building. This report provides the results of the test with an encapsulated LWF setup representing an apartment in a mid-rise (e.g. six-storey) building.
Online Access
Free
Resource Link
Less detail

Solutions for Mid-Rise Wood Construction: Second Apartment Fire Test with Encapsulated Lightweight Wood Frame Construction

https://research.thinkwood.com/en/permalink/catalogue345
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Lougheed, Gary
Su, Joseph
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Fire
Keywords
Gypsum
Mid-Rise
Language
English
Research Status
Complete
Summary
A research project, Wood and Wood-Hybrid Midrise Buildings, was undertaken to develop information to be used as the basis for alternative/acceptable solutions for mid-rise construction using wood structural elements. As part of this project, four large-scale fire experiments were conducted to evaluate the fire performance of two forms of encapsulated combustible structural wood systems, a lightweight wood-frame (LWF) system (2 experiments [3]) and a crosslaminated timber (CLT) system (1 experiment [4]). The fourth experiment [5] involved a test structure constructed using a steel frame system described below. Each experiment involved construction of a test set-up of an unsprinklered full-size apartment unit, intended to represent a portion of a mid-rise (e.g. six-storey) building. The intent was to provide the opportunity for comparison of the fire performance of the encapsulated LWF and CLT systems to that of the LSF system. However, after the initial 15 min, there were differences in the fire conditions within the apartment in the test of the LSF system that made this comparison difficult. This report provides the results of the second test with an encapsulated LWF setup representing an apartment in a mid-rise (e.g. six-storey) building.
Online Access
Free
Resource Link
Less detail

Solutions for Mid-Rise Wood Construction: Cone Calorimeter Results for Acoustic Membrane Materials Used in Floor Assemblies (Report to Research Consortium for Wood and Wood-Hybrid Mid-Rise Buildings)

https://research.thinkwood.com/en/permalink/catalogue1951
Year of Publication
2014
Topic
Acoustics and Vibration
Material
Light Frame (Lumber+Panels)
Application
Floors

Solutions for Mid-Rise Wood Construction: Full-Scale Apartment Fire Test with Lightweight Steel Frame Construction

https://research.thinkwood.com/en/permalink/catalogue742
Year of Publication
2014
Topic
Fire
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Taber, Bruce
Lougheed, Gary
Su, Joseph
Bénichou, Noureddine
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Fire
Keywords
Mid-Rise
National Building Code of Canada
Residential
Language
English
Research Status
Complete
Summary
The acceptable solutions provided in the 2010 National Building Code (NBC) Division B [1] limits the use of combustible (wood) construction based on building height. For example, for Group C (Residential), Group D (Business and Personal Services) and Group E (Mercantile) occupancies, combustible construction can be used up to 4 storeys, and up to 2 storeys for Group A – Division 2 (Assembly) occupancies. In addition to the building height limitation, there are also building area limitations in the 2010 NBC for the use of combustible construction for these occupancies. For buildings that exceed the height and area requirements for combustible construction, the prescriptive requirements in the 2010 NBC require that noncombustible construction be used for the primary structural elements.
Online Access
Free
Resource Link
Less detail

Solutions for Mid-Rise Wood Construction: Full-Scale Standard Fire Test for Exterior Wall Assembly Using Lightweight Wood Frame Construction wth Gypsum Sheathing

https://research.thinkwood.com/en/permalink/catalogue374
Year of Publication
2014
Topic
Fire
Material
Light Frame (Lumber+Panels)
CLT (Cross-Laminated Timber)
Application
Walls
Author
Gibbs, Eric
Taber, Bruce
Lougheed, Gary
Su, Joseph
Bénichou, Noureddine
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Fire
Keywords
Mid-Rise
Full Scale
Exterior Wall
Type X Gypsum Board
Language
English
Research Status
Complete
Summary
One of the tasks in the project, Wood and Wood-Hybrid Midrise Buildings, was to develop further information and data for use in developing generic exterior wall systems for use in mid-rise buildings using either lightweight wood frame or cross-laminated timber as the structural elements. This report describes a standard full-scale exterior wall fire test conducted on March 6, 2012 on an insulated lightweight wood frame wall assembly protected using gypsum sheathing. The test was conducted in accordance with CAN/ULC-S134-13 [3]
Online Access
Free
Resource Link
Less detail

Acoustics Summary: Sound Insulation in Mid-Rise Wood Building

https://research.thinkwood.com/en/permalink/catalogue750
Year of Publication
2014
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Schoenwald, Stefan
Zeitler, Berndt
King, Frances
Sabourin, Ivan
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Design and Systems
Keywords
Mid-Rise
Sound Insulation
Impact Sound Transmission
Airborne Sound Transmission
Language
English
Research Status
Complete
Summary
This report summarizes the acoustics research component regarding sound insulation of elements and systems for the research project on mid-rise and larger wood buildings. The summary outlines the background, main research considerations, research conducted and major outcomes. Further details of the design and the results can found in the appendix of Client Report A1-100035-02.1 [1]. The goal of the acoustics research components was to develop design solutions for mid-rise wood and wood-hybrid buildings that comply both with the current National Building Code of Canada (NBCC) 2010 [2] requirements for direct sound insulation and with the anticipated requirements for flanking sound transmission in the proposed, 2015 version of the NBCC. In addition, the design solutions were to provide better impact sound insulation while still achieving code compliance for all other disciplines (interdependencies) as identified in the final report of the scoping study conducted in FY 2010/2011 [3]
Online Access
Free
Resource Link
Less detail

Solutions for Mid-Rise Wood Construction: Full-Scale Standard Fire Test for Exterior Wall Assembly using Lightweight Wood Frame Construction with Interior Fire-Retardant-Treated Plywood Sheathing

https://research.thinkwood.com/en/permalink/catalogue348
Year of Publication
2014
Topic
Fire
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Gibbs, Eric
Taber, Bruce
Lougheed, Gary
Su, Joseph
Bénichou, Noureddine
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Fire
Keywords
Mid-Rise
Exterior Wall
Language
English
Research Status
Complete
Summary
One of the tasks in the project, Wood and Wood-Hybrid Midrise Buildings, was to develop further information and data for use in developing generic exterior wall systems for use in mid-rise buildings using either lightweight wood frame or cross-laminated timber as the structural elements. This report describes a standard full-scale exterior wall fire test conducted on April 9, 2013 on an insulated lightweight wood frame wall assembly protected using interior fire-retardant-treated (FRT) plywood sheathing. The test was conducted in accordance with CAN/ULC-S134-13 [3].
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.