Skip header and navigation

10 records – page 1 of 1.

Innovative Composite Steel-Timber Floors with Prefabricated Modular Components

https://research.thinkwood.com/en/permalink/catalogue1350
Year of Publication
2017
Topic
Connections
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Floors
Author
Loss, Cristiano
Davison, Buick
Publisher
ScienceDirect
Year of Publication
2017
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Floors
Topic
Connections
Design and Systems
Mechanical Properties
Keywords
Prefabricated
Multi-Storey
Residential
Bearing Capacity
Stiffness
Construction
Mechanical Connectors
Epoxy
Modular
Bending Tests
Finite Element Model
Language
English
Research Status
Complete
Series
Engineering Structures
Summary
An innovative steel-timber composite floor for use in multi-storey residential buildings is presented. The research demonstrates the potential of these steel-timber composite systems in terms of bearing capacity, stiffness and method of construction. Such engineered solutions should prove to be sustainable since they combine recyclable materials in the most effective way. The floors consist of prefabricated ultralight modular components, with a Cross-Laminated Timber (CLT) slab, joined together and to the main structural system using only bolts and screws. Two novel floor solutions are presented, along with the results of experimental tests on the flexural behaviour of their modular components. Bending tests have been performed considering two different methods of loading and constraints. Each prefabricated modular component uses a special arrangement of steel-timber connections to join a CLT panel to two customized cold-formed steel beams. Specifically, the first proposed composite system is assembled using mechanical connectors whereas the second involves the use of epoxy-based resin. In the paper, a FEM model is provided in order to extend this study to other steel-timber composite floor solutions. In addition, the paper contains the design model to be used in dimensioning the developed systems according to the state of the art of composite structures.
Online Access
Free
Resource Link
Less detail

The Fire Performance of Timber Floors in Multi-Storey Buildings

https://research.thinkwood.com/en/permalink/catalogue234
Year of Publication
2013
Topic
Fire
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Author
O'Neill, James
Organization
University of Canterbury
Year of Publication
2013
Country of Publication
New Zealand
Format
Thesis
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Topic
Fire
Design and Systems
Keywords
Abaqus
Finite Element Model
Full Scale
Furnace Tests
Charring Rate
Dead Load
Live Load
Zero-Strength Layer
Language
English
Research Status
Complete
Summary
This research investigated the fire performance of unprotected timber floors, focussing on composite joist floors, composite box floors and timber-concrete composite floors. The study of these floors was conducted using the finite element software ABAQUS using a thermo-stress analysis in three dimensions, and with experimental fire tests of floor assemblies. The major goal of this research was to develop a simplified design approach for timber floors, validated against the numerical and experimental work. Four furnace tests were conducted on unprotected timber floor systems in the full-scale furnace at the BRANZ facilities in New Zealand. A sequentially coupled thermal-stress analysis was conducted to determine the effects of a fire on floor assemblies under load. The thermal modelling predicted the charring damage of the floors tested in the experiments to within a few millimetres of precision, and the simplified assumptions made in relation to fire inputs, boundary conditions, mesh refinement and effective material parameters were accurate to the desired level of precision. A sensitivity study was conducted comparing different mesh sizes, time step sizes, material model approaches and software suites to determine any shortfalls which may be encountered in the analysis. It was found that a material model adopting a latent heat approach was the most adequate for modelling timber in fires using these effective values, and mesh sizes of up to 6 mm produced relatively precise results. The structural modelling predicted the displacement response and failure times of the floors to within 20% of the experimental data, and the simplified assumptions made in relation to fire inputs, boundary conditions, mesh refinement and effective material properties were once again accurate to the desired level of precision. A modification to the reduction in tension strength at elevated temperatures was proposed to better predict the observed behaviour. A sensitivity study concluded that the material model definition plays a vital role in the output of the modelling. Non-standard fire exposures were also modelled for completeness. A simplified design method to estimate the fire resistance of unprotected floor assemblies was also developed. The method uses a bi-linear charring rate the assumption of a zero strength layer in the timber. The method was compared to the experimental data from this research and others around the world. The results were also compared to other charring rate methodologies from around the world.
Online Access
Free
Resource Link
Less detail

Performance of Notched Connectors for CLT-Concrete Composite Floors

https://research.thinkwood.com/en/permalink/catalogue2656
Year of Publication
2020
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Author
Van Thai, Minh
Ménard, Sylvain
Elachachi, Sidi Mohammed
Galimard, Philippe
Publisher
MDPI
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Topic
Mechanical Properties
Connections
Keywords
Notched Connections
Finite Element Model
Connectors
Deconstructable Connections
Screw
Language
English
Research Status
Complete
Series
Buildings
Summary
CLT-concrete composite floor systems are a solution for timber buildings with a long-span floor. It yields a reduction of carbon footprint and even eco-friendly structure at the end of its service life. This study will evaluate the structural performance of notched connectors in the CLT-concrete composite floor, comprised of the serviceability stiffness, maximum load, and behavior at failure. The parameters of the test plan are the loaded edge length, the notch depth, the concrete thickness, and the screw length. Other secondary variables are also assessed, such as different loading sequences, speed of test, and timber moisture content. Experimental results prove that the performance of the connector depends significantly but not linearly on the notch depth and the length of the loaded edge. The connector with a deeper notch and a shorter heel will be stiffer and more robust, but it also tends to have a brittle rupture. The test results also help validate a solution for deconstructable connector systems. A nonlinear finite element model of the connector is built and validated versus the experimental results. It yields reasonably good predictions in terms of resistance and can capture the load-slip relationship.
Online Access
Free
Resource Link
Less detail

Glued Timber-Concrete Beams – Analytical and Numerical Models for Assessment of Composite Action

https://research.thinkwood.com/en/permalink/catalogue154
Year of Publication
2013
Topic
Design and Systems
Serviceability
Material
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Application
Beams
Author
Skec, Leo
Bjelanovic, Adriana
Jelenic, Gordan
Publisher
HRCAK
Year of Publication
2013
Country of Publication
Croatia
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Application
Beams
Topic
Design and Systems
Serviceability
Keywords
Finite Element Model
Load Carrying Capacity
Loading
Numerical models
Short-term
Language
English
Research Status
Complete
Series
Engineering Review
Summary
An analysis of glued composite timber-concrete systems is presented. Experimental data obtained from laboratory tests under short-term loading are compared with the analytical calculation and the design procedure for fully composite beams given in the EN 1995-1-1 standard. Numerical linear 2D finite element modelling and an analytical solution assuming linear elastic behaviour of glue and the interlayer slip are also conducted and validated. The effect of composite action in the three mentioned approaches is assessed by comparison of midspan deflections. In this way, a parametric study of the glue-line properties and the interlayer slip stiffness on load-carrying capacity and serviceability of glued composite beams exposed to short-time loading is easily performed.
Online Access
Free
Resource Link
Less detail

Steel-Timber Versus Steel-Concrete Composite Floors: A Numerical Study

https://research.thinkwood.com/en/permalink/catalogue1765
Year of Publication
2016
Topic
Mechanical Properties
Material
Steel-Timber Composite
LVL (Laminated Veneer Lumber)
Application
Floors
Author
Keipour, Nicka
Valipour, Hamid
Bradford, Mark
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Steel-Timber Composite
LVL (Laminated Veneer Lumber)
Application
Floors
Topic
Mechanical Properties
Keywords
Screws
Finite Element Model
Load Carrying Capacity
Strength
Stiffness
Composite Action
Brittle Failure
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5208-5216
Summary
Concrete is the most widely used construction material in the world. This material causes formation and release of CO2 and high energy consumption during manufacturing. One way to decrease concrete consumption negative consequences is to replace it with lower needed primary energy materials, like timber. The engineered wood products such as laminated veneer lumber (LVL)...
Online Access
Free
Resource Link
Less detail

Timber-Concrete Composite Connectors in Flat-Plate Engineered Wood Products

https://research.thinkwood.com/en/permalink/catalogue1275
Year of Publication
2016
Topic
Acoustics and Vibration
Mechanical Properties
Connections
Material
Timber-Concrete Composite
Application
Floors
Author
Gerber, Adam
Organization
University of British Columbia
Year of Publication
2016
Country of Publication
Canada
Format
Thesis
Material
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Mechanical Properties
Connections
Keywords
Strength
Stiffness
Shear Tests
Bending Tests
Vibration Tests
Dynamic Properties
Finite Element Model
Language
English
Research Status
Complete
Summary
Timber-Concrete Composite (TCC) systems are comprised of a timber element connected to a concrete slab through a mechanical shear connection. When TCC are used as flexural elements, the concrete and timber are located in compression and tension zones, respectively. A large number of precedents for T-beam configurations exist; however, the growing availability of flat plate engineered wood products (EWPs) in North America in combination with a concrete topping has offered designers and engineers greater versatility in terms of architectural expression and structural and building physics performance. The focus of this investigation was to experimentally determine the properties for a range of proprietary, open source, and novel TCC systems in several Canadian EWPs. Strength and stiffness properties were determined for 45 different TCC configurations based on over 300 small-scale shear tests. Nine connector configurations were selected for implementation in full-scale bending and vibration tests. Eighteen floor panels were tested for elastic stiffness under a quasi-static loading protocol and measurements of the dynamic properties were obtained prior to loading to failure. The tests confirmed that both hand calculations according to the -method and more detailed FEM models can predict the basic stiffness and dynamic properties of TCC floors within a reasonable degree of accuracy; floor capacities were more difficult to predict, however, failure did usually not occur until loading reached 10 times serviceability requirements. The research demonstrated that all selected connector configurations produced efficient timber-concrete-composite systems.
Online Access
Free
Resource Link
Less detail

Dynamic Performance of Timber and Timber-Concrete Composite Flooring Systems

https://research.thinkwood.com/en/permalink/catalogue229
Year of Publication
2013
Topic
Connections
Serviceability
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Author
Rijal, Rajendra
Organization
University of Technology Sydney
Year of Publication
2013
Country of Publication
Australia
Format
Thesis
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Topic
Connections
Serviceability
Keywords
Connections
Costs
Fasteners
Finite Element Model
Long Span
Multi-Storey
Sustainability
Vibrations
Small Scale
Static Load Tests
Damage Index (DI) Method
Loss of Composite Action Index (LCAI)
Language
English
Research Status
Complete
Summary
The work presented in this thesis deals with the investigation of the dynamic performance of timber only and TCC flooring systems, which is one of the sub-objectives of the research focus at UTS. In particular, the presented research assesses the dynamic performance of long-span timber and TCC flooring systems using different experimental und numerical test structures. For the experimental investigations, experimental modal testing and analysis is executed to determine the modal parameters (natural frequencies, damping ratios and mode shapes) of various flooring systems. For the numerical investigations, finite element models are calibrated against experimental results, and are utilised for parametric studies for flooring systems of different sizes. Span tables are generated for both timber and TCC flooring systems that can be used in the design of long-span flooring systems to satisfy the serviceability fundamental frequency requirement of 8 Hz or above. To predict the fundamental frequency of various TCC beams and timber floor modules (beams), five different analytical models are utilised and investigated. To predict the cross-sectional characteristics of TCC systems and to identify the effective flexural stiffness of partially composite beams, the “Gamma method” is utilised. [...] two novel methods are developed in this thesis that determines the degree of composite action of timber composite flooring systems using only measurements from non-destructive dynamic testing. The core of both methods is the use of an existing mode-shape-based damage detection technique, namely, the Damage Index (DI) method to derive the loss of composite action indices (LCAIs) named as LCAI1 and LCAI2. The DI method utilises modal strain energies derived from mode shape measurements of a flooring system before and after failure of shear connectors. The proposed methods are tested and validated on a numerical and experimental timber composite beam structure consisting of two LVL components (flange and web). To create different degrees of composite action, the beam is tested with different numbers of shear connectors to simulate the failure of connection screws. The results acquired from the proposed dynamic-based method are calibrated to make them comparable to traditional static-based composite action results. It is shown that the two proposed methods can successfully be used for timber composite structures to determine the composite action using only mode shapes measurements from dynamic testing.
Online Access
Free
Resource Link
Less detail

FE Modelling of Notched Connections for Timber-Concrete Composite Structures

https://research.thinkwood.com/en/permalink/catalogue1693
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Timber-Concrete Composite
Application
Beams
Floors
Author
Bedon, Chiara
Fragiacomo, Massimo
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Beams
Floors
Topic
Connections
Mechanical Properties
Keywords
Finite Element Model
Numerical Model
Failure Mechanisms
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4272-4280
Summary
Notched connections are extensively used in timber-concrete (TC) composite beams and floors. Their main advantage is a significantly higher shear strength and stiffness compared to mechanical fasteners. Several mechanical and geometrical aspects, however, should be properly taken into account for design optimization of notched connections, as they strongly affect their structural performance and the corresponding failure mechanisms. In this paper, a preliminary Finite-Element (FE) numerical investigation is carried out by means of full 3D numerical models. The mechanical behaviour of each connection component (e.g. the reinforced concrete topping, the steel coach screw, the timber beam) is properly implemented. Shear or crushing failure mechanisms in the concrete, possible plasticization of the coach screw, as well as longitudinal shear or tension perpendicular to the grain failure mechanisms in the timber beam are taken into account using cohesive elements, damage material constitutive laws and appropriate surface-tosurface interactions. The results of parametric FE studies are compared to experimental data derived from literature, as well as to the results of simplified analytical models, demonstrating that the FE model is capable to capture the experimental behaviour of the connection including the failure mechanisms.
Online Access
Free
Resource Link
Less detail

Numerical Models for Dynamic Properties of a 14 Storey Timber Building

https://research.thinkwood.com/en/permalink/catalogue274
Year of Publication
2012
Topic
Design and Systems
Connections
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Utne, Ingunn
Organization
Norwegian University of Science and Technology
Year of Publication
2012
Country of Publication
Norway
Format
Thesis
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Connections
Keywords
Dynamic Properties
Finite Element Model
Language
English
Research Status
Complete
Summary
The world tallest timber building with height of 45 meters, is planned for Bergen, Norway. In this master thesis the dynamic properties of the case building, as proposed by Sweco and Artec, are investigated. The proposed structural concept with a glulam frame and power-storeys, have never previously been built, and it is desirable to develop and understanding of the dynamic problems concerning this building. Previous work have shown problems with acceleration levels for tall timber building, mostly due to the material properties of timber. Timber has high flexibility and strength combined with low weight. The main aim of the work have been to build a 3D-model of the case building in a finite element program, where numerical methods can be used to find the dynamic properties of the building. The wind load and acceleration levels are investigated, and found to be reasonable compared to various criterions presented. The effect of the stiffness in the connections, as well as the use of apartment modules are investigated. In addition a dynamic analysis is run, and stochastic subspace state space system identification is used to verify the model. This can later be used for verification of the actual building when finished, and will be an important method to determine the actual damping and stiffness. Based on the findings in this work, the concept is assumed feasible, possible with some changes an even better concept is achieved. It will be exciting to see how Sweco will develop the concept further in the next planning phase.
Online Access
Free
Resource Link
Less detail

Seismic Design of a 10-Storey CLT Building

https://research.thinkwood.com/en/permalink/catalogue384
Year of Publication
2013
Topic
Design and Systems
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Follesa, Maurizio
Vassallo, Davide
Christovasilis, Ioannis
Organization
FPInnovations
Year of Publication
2013
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Connections
Keywords
Finite Element Model
Equivalent Seismic Force Procedure
Modal Response Spectrum Method
Language
English
Research Status
Complete
Summary
This report presents the seismic design of a 10-storey Cross Laminated Timber (CLT) building in Vancouver, BC, conducted according to the National Building Code of Canada. The multi-storey condominium consists of 20 apartments for a total floor area of about 2000 m2. First, a preliminary simplified model is formulated assuming the same stiffness per meter for each wall of the building. The Equivalent Seismic Force Procedure is applied and the results serve for a preliminary design of all the major connections that play a significant role on the lateral stiffness of the building, assuming rigid in plane floor diaphragms and well-anchored CLT walls. Based on the results of the preliminary design, a 3 dimensional finite element model is created, describing analytically the modelling approach adopted, and both the Equivalent Seismic Force Procedure (referred as static analysis) and the Modal Response Spectrum Method (referred as dynamic analysis) are applied to obtain the design forces for each wall of the building. Based on the results from the dynamic analysis, the final seismic design of the building is performed and the results are presented for connections dedicated to transfer (i) shear forces from floor diaphragms to walls below and from walls to diaphragms below, (ii) uplift forces for each wall, (iii) boundary forces between CLT panels within the same walls, (iv) boundary forces between perpendicular walls, and (v) boundary forces between CLT floor panels. All connections prescribed to provide ductility and energy dissipation are designed to fail in ductile failure mode according to the CSA 086-09 while connections that should remain within the elastic range to allow the ductile connections to yield are designed with overstrength factor.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.