Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Enabling Prefabricated Timber Building Systems in Commercial Construction

https://research.thinkwood.com/en/permalink/catalogue1927
Year of Publication
2017
Topic
Market and Adoption
Material
Glulam (Glue-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Bylund, David
Organization
Centre for Sustainable Architecture in Wood
Publisher
Forest & Wood Products Australia
Year of Publication
2017
Country of Publication
Australia
Format
Report
Material
Glulam (Glue-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Market and Adoption
Keywords
Prefabrication
Commercial
NCC
Mid-Rise
Language
English
Research Status
Complete
ISBN
978-1-925213-58-4
Summary
This project identifies drivers for, and barriers to, the increased use of prefabricated timber building (PTB) systems in Class 2 to 9 commercial buildings, such as apartments, hotels, office buildings and schools. PTB systems in Australia are in a formative stage and yet to achieve broad acceptance in the marketplace as a conventional method of building. Opportunities for PTB systems can use timber’s well-established benefits such as high strength-to-weight ratio; design and construction flexibility; general environmental credentials including carbon sequestration; and prefabrication’s suitability for use on brown-field, restricted access and difficult sites and developments. In addition legislative constraints have now been largely removed (e.g. through changes to the 2016 National Construction Code). An increase in large scale mid-rise prefabricated buildings, and with the increasing nationalisation and internationalisation of the top tier building companies, suggests market acceptance will grow as PTB buildings are seen as ‘normal’.
Online Access
Free
Resource Link
Less detail

Transition Strategies: Accelerating Social Acceptance and Removing the Barriers to Prefabricated Multi-Storey Timber Urban Infill Developments in Australia Using CLT Construction Systems

https://research.thinkwood.com/en/permalink/catalogue50
Year of Publication
2012
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Author
Lehmann, Steffen
Reinschmidt, Amanda
Mustillo, Lauren
Organization
Forest and Wood Products Australia
Year of Publication
2012
Country of Publication
Australia
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Market and Adoption
Keywords
Australia
Multi-Storey
Social Acceptance
Consumer Behaviour
Housing
Language
English
Research Status
Complete
Summary
This report was commissioned to review and formulate strategies for the accelerated uptake and social acceptance of living in multi-storey cross-laminated timber (CLT)-constructed buildings in infill developments to: remove cultural barriers, meet the sustainability expectations of potential buyers and obtain a better understanding of how we can facilitate the rapid introduction of this innovative construction technology in Australia. An extensive review of literature within the field was conducted to gather an overview of the barriers that inhibit consumers, governments and industry in the uptake and acceptance of CLTconstructed buildings for infill development. Data was collected on CLT buildings worldwide, to build a comprehensive picture of multi-storey timber buildings using CLT-construction systems.
Online Access
Free
Resource Link
Less detail

Expanding Opportunities for Mid-Rise Buildings in Chile through the Application of Timber Panel Systems

https://research.thinkwood.com/en/permalink/catalogue193
Year of Publication
2012
Topic
Market and Adoption
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Rivera, Cristián
Organization
University of British Columbia
Year of Publication
2012
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Market and Adoption
Seismic
Keywords
Chile
Codes
Mid-Rise
Prefabrication
City Densification
Language
English
Research Status
Complete
Summary
During the last few years, the merging of timber building tradition with the application of new technologies has produced new prefabricated building systems in Europe and North America. Mid-rise buildings present a unique opportunity to apply new timber technologies. Chile has shown sustained growth of buildings construction during the past decades but little further development in the use of wood. To establish the feasibility of timber systems applied to the Chilean context this research considered social aspects, technical aspects and local standards related to the manufacture and construction using timber components. A project proposal is used to analyze the architectural applications of timber systems according to the Chilean context. The design considers the case of densification in the city of Santiago and investigates the possibility of developing mid-rise structures using the structural properties and features of timber systems. So far only two systems applied to mid-rise structures have been tested for seismic resistance on full scale prototypes: Midply and Cross Laminated Timber.
Online Access
Free
Resource Link
Less detail

Market Opportunities for Prefabricated Construction Using Mass Timber

https://research.thinkwood.com/en/permalink/catalogue2814
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
Light Frame (Lumber+Panels)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Organization
BlackBox Offsite Solutions
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
Light Frame (Lumber+Panels)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Market and Adoption
Keywords
Prefabrication
Mass Timber
Light-frame wood
Canada
Research Status
In Progress
Notes
Project contact is Craig Mitchell at Black Box Offsite Solutions
Summary
The study assesses the current state of the prefabrication industry in Canada and identifies key challenges and potential market opportunities in the sector for the increased use of mass timber. This analysis of the current state of the industry examines all forms of prefabrication, with a focus on wood (light wood frame and mass timber) where possible. A more detailed analysis focuses on future mass timber market opportunities in Canada and globally, including prefabricated timber building elements (i.e. structural components, retrofit components, etc.) and building typologies. Recommendations will inform policy decisions and other efforts required to support the further development and adoption of prefabricated timber buildings in Canada.
Less detail

The Potential Use of Timber from Palm Trees for Building Purposes

https://research.thinkwood.com/en/permalink/catalogue536
Year of Publication
2014
Topic
Market and Adoption
Material
Other Materials
Author
Fruehwald, Arno
Fruehwald, Katja
Fathi, Leila
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Other Materials
Topic
Market and Adoption
Keywords
Market
Palm
Physical Properties
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Palm trees are a family of plants with hundreds of species. Most important species are coconut palm, oil palm and date palm. Most palms grow in tropical regions, but some species also in semidry regions (date palms). Palms have played an important role for the supply of food and they provide shade for agricultural crops and they are planted in parks and gardens. With exception for coconut wood, the wood from palm trees has not been used to a large extent. But it is considered as an important resource. According to FAO, coco-, oil- and date palms cover over 30 million ha worldwide with a total stem wood potential of 150-200 million m³ per year. Generally this wood resource can play an important role in the regional/worldwide wood supply; mainly in Asia, Arabic countries, Africa and Latin America. The stem of the tree (coconut-, oil- and date Palm) is between 10 and 20 (25) m long, has a lower diameter of 40 – 60 cm and a taper of 0.3 – 0.7 cm/m. Being monocotyledons, palms show distinct differences in the wood structure compared to common wood species.
Online Access
Free
Resource Link
Less detail

Sustainable Construction for Urban Infill Development Using Engineered Massive Wood Panel Systems

https://research.thinkwood.com/en/permalink/catalogue289
Year of Publication
2012
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Lehmann, Steffen
Publisher
MDPI
Year of Publication
2012
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Market and Adoption
Keywords
Social Acceptance
Cultural Acceptance
North America
Australia
Housing
Language
English
Research Status
Complete
Series
Sustainability
Summary
Prefabricated engineered solid wood panel construction systems can sequester and store CO2. Modular cross-laminated timber (CLT, also called cross-lam) panels form the basis of low-carbon, engineered construction systems using solid wood panels that can be used to build residential infill developments of 10 storeys or higher. Multi-apartment buildings of 4 to 10 storeys constructed entirely in timber, such as recently in Europe, are innovative, but their social and cultural acceptance in Australia and North America is at this stage still uncertain. Future commercial utilisation is only possible if there is a user acceptance. The author is part of a research team that aims to study two problems: first models of urban infill; then focus on how the use of the CLT systems can play an important role in facilitating a more livable city with better models of infill housing. Wood is an important contemporary building resource due to its low embodied energy and unique attributes. The potential of prefabricated engineered solid wood panel systems, such as CLT, as a sustainable building material and system is only just being realised around the globe. Since timber is one of the few materials that has the capacity to store carbon in large quantities over a long period of time, solid wood panel construction offers the opportunity of carbon engineering, to turn buildings into ‘carbon sinks’. Thus some of the historically negative environmental impact of urban development and construction can be turned around with CLT construction on brownfield sites
Online Access
Free
Resource Link
Less detail

Fire Safety and Tall Timber Buildings—What’s Next?

https://research.thinkwood.com/en/permalink/catalogue1253
Year of Publication
2017
Topic
Design and Systems
Market and Adoption
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Barber, David
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2017
Country of Publication
United States
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Market and Adoption
Keywords
Fire Safety
Exposed Load Bearing Timber
Concealed Connections
Language
English
Conference
Structures Congress 2017
Research Status
Complete
Notes
April 6–8, 2017, Denver, Colorado
Summary
Model building codes in the United States limit timber construction to six stories, due to concerns over fire safety and structural performance. With new timber technologies, tall timber buildings are now being planned for construction. The process for building approval for a building constructed above the code height limits with a timber load-bearing structure, is by an alternative engineering means. Engineering solutions are required to be developed to document and prove equivalent performance to a code compliant structure, where approval is based on substantive consultation and documentation. Architects in the US are also pushing the boundaries and requesting load-bearing timber be exposed and not fully encapsulated in fire rated gypsum drywall. This provides an opportunity for the application of recent fire research on exposed timber to be applied, and existing methods of analyzing the impact of fire on engineered timber structures to be developed further. This paper provides an overview of the performance based fire safety engineering required for building approval and also describes the engineering methodologies that can be utilized to address specific exposed load-bearing timber issues; concealed connections for glulam beams; and the methodology to address areas of exposed timber.
Online Access
Payment Required
Resource Link
Less detail

Use of Augmented Reality as a Tool for Valuing Wood Materials During the Design Phase - Architectural Component

https://research.thinkwood.com/en/permalink/catalogue2255
Topic
Market and Adoption
Organization
Université Laval
Country of Publication
Canada
Topic
Market and Adoption
Keywords
Augmented Reality
Visual Appearance
Research Status
In Progress
Notes
Project contact is Jean-François Lalonde at Université Laval
Summary
In the development of an architectural concept, the perception of the client is a key element for acceptability. Wood often becomes a dominant architectural element. While decision-making on the choice of materials is often subject to budgetary considerations, it appears that the added value of wood in the building’s design, even on the basis of preliminary sketches and models (physical or visual), is not adequately delivered. The project proposes to explore augmented reality technology as a technique allowing greater acceptability of wood material during the initial design phases. The architectural component will explore the creative potential and quantify public perception when subject to the use of wood material in augmented reality.
Less detail

Overcoming Market Barriers to Increase Use of Structural Mass Timber in Healthcare Environment

https://research.thinkwood.com/en/permalink/catalogue2567
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Organization
University of Oregon
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Topic
Market and Adoption
Keywords
Healthcare
Hygienic Performance
Moisture Performance
Research Status
In Progress
Notes
Project contact is Kevin Van Den Wymelenberg at the University of Oregon
Summary
The goal of this project is to accelerate the application of structural mass timber, such as cross-laminated timber (CLT), in outpatient healthcare construction. In particular, this project will address concerns related to hygienic and moisture performance of CLT, as well as exploring other challenges faced in mass timber construction. The project will engage with industry partners representing architecture, engineering, and construction (AEC), healthcare professionals, and policy-makers to advance the state of knowledge and market penetration of CLT in healthcare. Healthcare construction is a large and growing sector; pioneering the use of CLT in this market would significantly increase utilization of small-diameter and lower-quality timber. Ultimately, successful implementation of this project would help achieve USFS regional priorities of supporting ecosystem restoration and wildland fire management, as well as Oregon’s State Forest Action Plan goals of protecting communities at risk of wildfire, maintaining the forestland base, and preserving diversity of upland habitats.
Less detail

Hybrid CLT-Based Modular Construction Systems for Prefabricated Buildings

https://research.thinkwood.com/en/permalink/catalogue1901
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Wood Building Systems
Floors
Walls

10 records – page 1 of 1.