Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Damage Assessment of Cross Laminated Timber Connections Subjected to Simulated Earthquake Loads

https://research.thinkwood.com/en/permalink/catalogue70
Year of Publication
2012
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Schneider, Johannes
Stiemer, Siegfried
Tesfamariam, Solomon
Karacabeyli, Erol
Popovski, Marjan
Year of Publication
2012
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Seismic
Keywords
Damage
Panels
North American Market
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
July 15-19, 2012, Auckland, New Zealand
Summary
Wood-frame is the most common construction type for residential buildings in North America. However, there is a limit to the height of the building using a traditional wood-frame structure. Cross-laminated timber (CLT) provides possible solutions to mid-...
Online Access
Free
Resource Link
Less detail

Performance of Steel Energy Dissipators Connected to Cross-Laminated Timber Wall Panels Subjected to Tension and Cyclic Loading

https://research.thinkwood.com/en/permalink/catalogue652
Year of Publication
2016
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Kramer, Anthonie
Barbosa, André
Sinha, Arijit
Publisher
American Society of Civil Engineers
Year of Publication
2016
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Connections
Seismic
Keywords
Energy Dissipation
Digital Image Correlation
Strain Behavior
Yield Behavior
Language
English
Research Status
Complete
Series
Journal of Structural Engineering
Summary
This paper presents a new alternative energy dissipation solution to be used with cross-laminated timber (CLT) self-centering walls. CLT is a relatively new building product in North America and could potentially be used for high-rise construction. The development of high-performance seismic design solutions is necessary to encourage innovative structures and the design of these structures to new heights. The objective of this paper is to propose a wall-to-floor connection system that is easy to install and replace (structural fuse) after the occurrence of a large damaging event. The proposed energy dissipators are fabricated following concepts used in developing steel buckling restrained steel braces (BRB), having a milled portion, which is designed to yield and is enclosed within a grouted steel pipe. The connection system is investigated experimentally through a test sequence of displacement-controlled cycles based on a modified version of the test method developed by the American Concrete Institute (ACI) to facilitate development of special precast systems (ACI T1.1-01 Acceptance Criteria for Moment Frames Based on Structural Testing). Digital Image Correlation (DIC) was used to analyze strain behavior of the milled portion, as well as track movement of the panels during quasi-static uniaxial and cyclic testing. The results show the yield behavior and energy dissipation properties of the connection system. Damage was focused primarily in the energy dissipators, with negligible deformation and damage to the CLT panels and connections.
Online Access
Free
Resource Link
Less detail

Effect of Realistic Boundary Conditions on the Behaviour of Cross-Laminated Timber Elements Subjected to Simulated Blast Loads

https://research.thinkwood.com/en/permalink/catalogue2361
Year of Publication
2017
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Author
Cote, Dominic
Publisher
University of Ottawa
Year of Publication
2017
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Topic
Seismic
Keywords
Connections
Seismic Load
Blast Loads
Fasteners
Language
English
Research Status
Complete
Summary
Cross-laminated timber (CLT) is an emerging engineered wood product in North America. Past research effort to establish the behaviour of CLT under extreme loading conditions has focussed CLT slabs with idealized simply-supported boundary conditions. Connections between the wall and the floor systems above and below are critical to fully describing the overall behaviour of CLT structures when subjected to blast loads. The current study investigates the effects of “realistic” boundary conditions on the behaviour of cross-laminated timber walls when subjected to simulated out-of-plane blast loads. The methodology followed in the current research consists of experimental and analytical components. The experimental component was conducted in the Blast Research Laboratory at the University of Ottawa, where shock waves were applied to the specimens. Configurations with seismic detailing were considered, in order to evaluate whether existing structures that have adequate capacities to resist high seismic loads would also be capable of resisting a blast load with reasonable damage. In addition, typical connections used in construction to resist gravity and lateral loads, as well as connections designed specifically to resist a given blast load were investigated. The results indicate that the detailing of the connections appears to significantly affect the behaviour of the CLT slab. Typical detailing for platform construction where long screws connect the floor slab to the wall in end grain performed poorly and experienced brittle failure through splitting in the perpendicular to grain direction in the CLT. Bearing type connections generally behaved well and yielding in the fasteners and/or angles brackets meant that a significant portion of the energy was dissipated there reducing the energy imparted on the CLT slab significantly. Hence less displacement and thereby damage was observed in the slab. The study also concluded that using simplified tools such as single-degree-of-freedom (SDOF) models together with current available material models for CLT is not sufficient to adequately describe the behaviour and estimate the damage. More testing and development of models with higher fidelity are required in order to develop robust tools for the design of CLT element subjected to blast loading.
Online Access
Free
Resource Link
Less detail

Experimental Investigation of Wall-To-Floor Connections in Post-Tensioned Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue60
Year of Publication
2014
Topic
Connections
Seismic
Material
LVL (Laminated Veneer Lumber)
Application
Walls
Floors
Author
Moroder, Daniel
Sarti, Francesco
Palermo, Alessandro
Pampanin, Stefano
Buchanan, Andrew
Year of Publication
2014
Country of Publication
New Zealand
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Walls
Floors
Topic
Connections
Seismic
Keywords
Connections
Damage
Lateral Loads
Post-Tensioned
Pres-Lam
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
March 21-23, 2014, Auckland, New Zealand
Summary
Rocking timber walls provide an excellent lateral load resisting system for structures using the low damage seismic design philosophy. Special attention has to be given to the wall-to-floor connections, because diaphragm forces have to be properly transferred while accommodating displacement incompatibilities, which include the relative rotation and the uplift of the wall with respect to the floor. This paper presents the experimental behaviour of several different wall-to-floor connections in Pres-Lam post-tensioned timber structures subjected to horizontal seismic loading. A 2/3 scale post-tensioned timber wall was laterally loaded through collector beams using different connection details. Bolted connections take advantage of the flexibility of the fasteners and lead to some bending of the collector beam, whereas pins and slotted steel plates reduce the wall-tofloor interaction, as they allow for rotation and some uplift. No significant damage to the floors was observed in any of the tests. The experimental results showed that floor damage can generally be prevented up to high levels of drift by the flexibility of well-designed connections and the flexibility of the collector beams. In the case of very stiff floors or very stiff collector beams, a more sophisticated connection such as sliding steel elements with a vertical slot should be considered.
Online Access
Free
Resource Link
Less detail

Damage Assessment of Connections used in Cross-Laminated Timber Subject to Cyclic Loads

https://research.thinkwood.com/en/permalink/catalogue225
Year of Publication
2014
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Schneider, Johannes
Karacabeyli, Erol
Popovski, Marjan
Stiemer, Siegfried
Tesfamariam, Solomon
Publisher
American Society of Civil Engineers
Year of Publication
2014
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Seismic
Keywords
Fasteners
Damage Index (DI) Method
Brackets
Load Displacement
Hysteretic
Language
English
Research Status
Complete
Series
Journal of Performance of Constructed Facilities
Notes
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000528
Summary
Cross-laminated timber (CLT) products are gaining popularity in the North American market and are being used in midrise wood buildings, in particular, in shearwall applications. Shearwalls provide resistance to lateral loads such as wind and earthquake loads, and therefore it is important to gain a better understanding of the behavior of CLT shearwall systems during earthquake events. This paper is focused on the seismic performance of connections between CLT shearwall panels and the foundation. CLT panels are very stiff and energy dissipation is accomplished by the connections. A literature review on previous research work related to damage prediction and assessment for wood frame structures was performed. Furthermore, a test program was conducted to investigate the performance of CLT connections subjected to simulated earthquake loads. Two different brackets in combination with five types of fasteners were tested under monotonic and cyclic loading protocols. In total, 98 connection tests were conducted and the monotonic load-displacement curves and hysteretic loops were obtained. In this paper, an energy-based cumulative damage assessment model was calibrated with the CLT connection test data. Finally, a correlation between the damage index and physical damage is provided.
Online Access
Free
Resource Link
Less detail

Overstrength of Dowelled CLT Connections Under Monotonic and Cyclic Loading

https://research.thinkwood.com/en/permalink/catalogue1385
Year of Publication
2018
Topic
Connections
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Author
Ottenhaus, Lisa-Mareike
Li, Minghao
Smith, Tobias
Quenneville, Pierre
Publisher
Springer Netherlands
Year of Publication
2018
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Mechanical Properties
Seismic
Keywords
Overstrength
Ductility
Three Point Bending Test
Fasteners
Yield Moment
Monotonic Loading
Cyclic Loading
Steel Dowels
Steel Plates
Language
English
Research Status
Complete
Series
Bulletin of Earthquake Engineering
ISSN
1573-1456
Summary
This paper presents an evaluation of overstrength based on an experimental study on dowelled connections in cross-laminated timber (CLT). Connection overstrength needs to be well understood in order to ensure that ductile system behaviour and energy dissipation can be achieved under seismic loading. Overstrength is defined as the difference between the code-based strength, using characteristic material strengths, and the 95th 4 percentile of the true strength distribution. Many aspects contribute to total connection overstrength, which makes its definition challenging. In this study, half-hole embedment tests were performed on CLT to establish embedment strength properties and three point bending tests were performed to determine the fastener yield moment. Different connection layouts, making use of mild steel dowels and an internal steel plate, were tested under monotonic and cyclic loading to evaluate theoretically determined overstrength values and study the influence of cyclic loading on overstrength. Experimental results were compared with strength predictions from code provisions and analytical models for ductile response under monotonic loading. It was found that cyclic loading does not significantly influence overstrength for connections that respond in a mixed-mode ductile way indicating that in future more expedient monotonic test campaigns could be used. This work also provides further experimental data and theoretical considerations necessary for the estimation of a generally applicable overstrength factor for dowelled CLT connections.
Online Access
Free
Resource Link
Less detail

Experimental and Numerical Investigation of Novel Steel-Timber-Hybrid System

https://research.thinkwood.com/en/permalink/catalogue81
Year of Publication
2014
Topic
Design and Systems
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Bhat, Pooja
Azim, Riasat
Popovski, Marjan
Tannert, Thomas
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Connections
Keywords
Tall Wood
Timber-Steel Hybrid
FFTT
Quasi-Static
Monotonic Testing
Cyclic Testing
Strong-column Weak-beam Failure
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
This paper summarises the experimental and numerical investigation conducted on the main connection of a novel steel-timber hybrid system called FFTT. The component behaviour of the hybrid system was investigated using quasi-static monotonic and reversed cyclic tests. Different steel profiles (wide flange I-sections and hollow rectangular sections) and embedment approaches for the steel profiles (partial and full embedment) were tested. The results demonstrated that when using an appropriate connection layout, the desired strong-column weak-beam failure mechanism was initiated and excessive wood crushing was avoided. A numerical model was developed that reasonably reflected the real component behaviour and can subsequently be used for numerical sensitivity studies and parameter optimization. The research presented herein serves as a precursor for providing design guidance for the FFTT system as an option for tall wood-hybrid buildings in seismic regions.
Online Access
Free
Resource Link
Less detail

Connections for Stackable Heavy Timber Modules in Midrise to Tall Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue2087
Year of Publication
2019
Topic
Connections
Design and Systems
Seismic
Material
LVL (Laminated Veneer Lumber)
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Zhang, Chao
Lee, George
Lam, Frank
Organization
University of British Columbia
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
LVL (Laminated Veneer Lumber)
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Design and Systems
Seismic
Keywords
Modular
Intra-module Connection
Inter-module Vertical Connection
Inter-module horizontal Connection
Mid-Rise
Tall Wood
Screws
Load Transfer
Steel Angle Bracket
Stiffness
Strength
Ductility
Language
English
Research Status
Complete
Summary
In Phase I (2018-19) of this project on Prefabricated Heavy Timber Modular Construction, three major types of connections used in a stackable modular building were studied: intramodule connection, inter-module vertical connection, and inter-module horizontal connection. The load requirement and major design criteria were identified...
Online Access
Free
Resource Link
Less detail

Resistance of Glued-in Rod Connections to Seismic Loads

https://research.thinkwood.com/en/permalink/catalogue2192
Topic
Connections
Seismic
Application
Floors
Frames
Walls
Organization
Université de Sherbrooke
Country of Publication
Canada
Application
Floors
Frames
Walls
Topic
Connections
Seismic
Keywords
Glued-In Rods
Research Status
In Progress
Notes
Project contact is Jean Proulx at Université de Sherbrooke
Summary
While glued-in rods meet a need for refined architectural design, do they respond to a seismic architectural design? Can they prevent destructive damage and ensure recovery efforts given that this system has singular anchor points? Do the braces and diaphragms have the same behavior as in traditional connector systems? Based on the work of Verdet (2016), modeling can identify the a priori behavior followed by a validation test on seismic table.
Less detail

Responses and Capacity Curves of Mid- and High-Rise Wood Buildings Subjected to Seismic Excitations

https://research.thinkwood.com/en/permalink/catalogue2505
Year of Publication
2020
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Yang, S.C.
Hong, Hanping
Bartlett, F.M.
Publisher
Canadian Science Publishing
Year of Publication
2020
Country of Publication
Canada
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Design and Systems
Keywords
Capacity
Hysteretic Model
Connectors
Inelastic Responses
Seismic Excitations
Language
English
Research Status
Complete
Series
Canadian Journal of Civil Engineering
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.