Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Performance of Two-Storey CLT House Subjected to Lateral Loads

https://research.thinkwood.com/en/permalink/catalogue376
Year of Publication
2014
Topic
Connections
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Popovski, Marjan
Gavric, Igor
Schneider, Johannes
Organization
FPInnovations
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Design and Systems
Keywords
Lateral Loads
North America
Building Codes
Full Scale
Quasi-Static
Monotonic Loading
Cyclic Loading
Failure Mechanism
Language
English
Research Status
Complete
Summary
The work presented in this report is a continuation of the FPInnovations' research project on determining the performance of the CLT as a structural system under lateral loads. A two storey full-scale model of a CLT house was tested under quasi-static monotonic and cyclic lateral loading in two directions, one direction at a time. In total five tests were performed; one push-over and two cyclic tests were conducted in the longer symmetrical direction (E-W), and two cyclic tests were performed in the shorter asymmetrical direction (N-S). In addition, before and after each test, natural frequencies of the house in both directions were measured. The main objective of the tests was to investigate 3-D system behaviour of the CLT structure subjected to lateral loads. The CLT structure subjected to lateral loads performed according to the design objectives.
Online Access
Free
Resource Link
Less detail

Investigation of a Post-Tensioned Timber Connection

https://research.thinkwood.com/en/permalink/catalogue335
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Frangi, Andrea
Wanninger, Flavio
Organization
ETH Zurich
Year of Publication
2014
Country of Publication
Switzerland
Format
Report
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Connections
Mechanical Properties
Keywords
Ash
Bending Test
Failure
Hardwood
Post-Tensioned
Reinforcement
Spruce
Language
English
Research Status
Complete
Summary
A post tensioned timber connection made of glulam has been developed at the ETH in Zurich. The connection is made of spruce with ash reinforcement in the connection area where high stresses perpendicular to the grain occur. The moment-rotation-behaviour of this post-tensioned beam-column timber joint has been analysed with a series of static bending tests. The timber joint was loaded at the ends of the beams in order to apply a moment to the connection. The tests were conducted with different forces in the tendon, from 300 kN up to 700 kN. The bending tests were performed with a controlled load level, so that no embedment failure perpendicular to the grain occurred in the column. The intended self-centring behaviour could be verified and no damage could be observed during all the tests. A final bending test was conducted in order to study the failure mode of the post-tensioned timber connection. The vertical load on the beams was increased until the tendon-elongation got so high that the test had to be aborted due to safety reasons. Nearly no damage occurred during the last test, only minor residual deformations could be observed. The failure is an embedment failure in the column due to exceedance of the strength perpendicular to the grain. The specimen, test setup, instrumentation and the results of all performed tests are presented in this technical report.
Online Access
Free
Resource Link
Less detail

Design Models for CLT Shearwalls and Assemblies Based on Connection Properties

https://research.thinkwood.com/en/permalink/catalogue369
Year of Publication
2014
Topic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Popovski, Marjan
Gavric, Igor
Organization
FPInnovations
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Keywords
Lateral Loads
Analytical Model
North America
Europe
Language
English
Research Status
Complete
Summary
The work presented in this report is a continuation of the FPInnovations' research project on determining the performance of the CLT as a structural system under lateral loads. As currently there are no standardized methods for determining the resistance of CLT shearwalls under lateral loads, the design approaches are left at the descretion of the designers. The most common approach that is currently used in Europe and North America assumes that the resistance of CLT walls is a simple summary of the shear resistance of all connectors at the bottom of the wall. In this report some new analytical models for predicting the design (factored) resistance of CLT walls under lateral loads were developed based on connection properties. These new models were then evaluated for their consistency along with their models that are currently used in North America and in Europe.
Online Access
Free
Resource Link
Less detail

Connections for Stackable Heavy Timber Modules in Midrise to Tall Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue2087
Year of Publication
2019
Topic
Connections
Design and Systems
Seismic
Material
LVL (Laminated Veneer Lumber)
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Zhang, Chao
Lee, George
Lam, Frank
Organization
University of British Columbia
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
LVL (Laminated Veneer Lumber)
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Design and Systems
Seismic
Keywords
Modular
Intra-module Connection
Inter-module Vertical Connection
Inter-module horizontal Connection
Mid-Rise
Tall Wood
Screws
Load Transfer
Steel Angle Bracket
Stiffness
Strength
Ductility
Language
English
Research Status
Complete
Summary
In Phase I (2018-19) of this project on Prefabricated Heavy Timber Modular Construction, three major types of connections used in a stackable modular building were studied: intramodule connection, inter-module vertical connection, and inter-module horizontal connection. The load requirement and major design criteria were identified...
Online Access
Free
Resource Link
Less detail

Calculating the Fire Resistance of Wood Members and Assemblies: Technical Report No. 10

https://research.thinkwood.com/en/permalink/catalogue2492
Year of Publication
2020
Topic
Fire
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Columns
Beams
Floors
Walls
Wood Building Systems
Decking

Preliminary Assessment of Hygrothermal Performance of Cross-Laminated Timber Wall Assemblies Using Hygrothermal Models

https://research.thinkwood.com/en/permalink/catalogue2628
Year of Publication
2010
Topic
Moisture
Design and Systems
Serviceability
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Author
Wang, J.
Baldracchi, P.
Organization
FPInnovations
Year of Publication
2010
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Topic
Moisture
Design and Systems
Serviceability
Keywords
Hygrothermal
Moisture Performance
Rainscreen
Language
English
Research Status
Complete
Summary
Preliminary simulation was carried out using hygIRC and WUFI, both 1-D hygrothermal models, to analyze moisture performance of rainscreened wood-frame walls and cross-laminated timber (CLT) walls for the climates in Vancouver and Calgary. The major results are as follows. In order to provide baseline knowledge, preliminary comparisons between hygIRC and WUFI were conducted to investigate the effects of climate data, wall orientations and rain intrusion on the performance of the rainscreened wood-frame walls based on Vancouver’s climate. hygIRC tended to produce almost constant moisture content (MC) of the plywood sheathing throughout a year but WUFI showed greater variations, particularly when the ventilation of the rainscreen cavity was neglected. Rainscreen cavity ventilation provided dramatic drying potentials for wall assemblies based on the WUFI simulation. hygIRC indicated that east-facing walls had the highest moisture load, but the differences between orientations seemed negligible in WUFI when the rainscreen cavity ventilation was taken into account. When 1% of wind-driven rain was simulated as an additional moisture load, hygIRC suggested that the rainscreen walls could not dry out in Vancouver, WUFI, however, indicated that they could dry to a safe MC level in the summer. The discrepancies in material property data between the two models and between different databases in WUFI (even for the same wood species) were found to be very large. In terms of wood sorption data, large differences existed at near-saturated RH levels. This is a result of using pressure-plate/membrane methods for measuring material equilibrium moisture content (EMC) under high RH conditions. The EMC of wood at near-100% RH conditions measured with these methods can be higher than 200%, suggesting wood in construction would decay without liquid water intrusion or severe vapour condensation. The pressure-plate/membrane methods also appeared to be highly species-dependent, and have higher EMC at a certain RH level for less permeable species, from which it is relatively difficult to remove water during the measurement. The hygrothermal simulation in this work suggested that such a species bias caused by testing methods could put impermeable species (most Canadian species) at a disadvantage to permeable species like southern pine during related durability design of building assemblies. In terms of using CLT for construction in Vancouver and Calgary, the WUFI simulations suggested that the use of less permeable materials such as EPS (expanded polystyrene insulation), XPS (extruded polystyrene insulation), self-adhered bituminous membrane and polyethylene in wall assemblies reduced the ability of the walls to dry. On the other hand, permeable assemblies such as those using relatively permeable insulation like semi-rigid mineral wool (rock wool) as exterior insulation, instead of less permeable exterior insulation materials, would help walls dry. The simulation also suggested that using CLT products with initially low MC would significantly reduce moisture-related risks, which indicated the importance of protecting CLT and avoiding wetting during transportation and construction. In addition, the simulation found that indoor relative humidity (RH) conditions generated by the indoor RH prediction models included in hygIRC and WUFI varied greatly under the same basic climate and building conditions. The intermediate method specified in ASHRAE Standard 160 P resulted in long periods of saturated RH conditions throughout a year for the Vancouver climate, which may not be representative of ordinary residential buildings in Vancouver. The simulation in this study is preliminary and exploratory. It would be arbitrary to recommend one model over the other based on this report or use the simulation results directly for CLT wall assembly design without consultation with building science specialists. However, this work revealed more opportunities for close collaborations between the wood science and the building science communities. More work should be carried out to develop appropriate testing methods and assemble material property data for hygrothermal simulation of wood-based building assemblies. Model improvement and field verification are also strongly recommended, particularly for new building systems such as CLT constructions.
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Modelling of Timber Connections Under Force and Fire

https://research.thinkwood.com/en/permalink/catalogue1473
Year of Publication
2018
Topic
Connections
Fire
Seismic
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Chen, Zhiyong
Ni, Chun
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Connections
Fire
Seismic
Design and Systems
Keywords
Finite Element Model
Bolted Connection
Load-Displacement Curves
Language
English
Research Status
Complete
Summary
FPInnovations carried out a survey with consultants and researchers on the use of analytical models and software packages related to the analysis and design of mass timber buildings. The responses confirmed that a lack of suitable models and related information for material properties of timber connections was creating an impediment to the design and construction of this type of buildings. Furthermore, there is currently a lack of computer models and expertise for carrying out performance-based design for wood buildings, in particular seismic and/or fire performance design. In this study, a sophisticated constitutive model for wood-based composite material under stress and temperature was developed. This constitutive model was programmed into a user-subroutine which can be added to most general-purpose finite element software. The developed model was validated with test results of a laminated veneer lumber (LVL) beam and glulam bolted connection under force and/or fire.
Online Access
Free
Resource Link
Less detail

Blast-Resistant Testing for Loaded Mass Timber Structures

https://research.thinkwood.com/en/permalink/catalogue843
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Organization
Forest Products Laboratory
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Mechanical Properties
Keywords
Exterior Walls
Blast Loads
Protection
Research Status
In Progress
Summary
Opening new markets for the use of CLT that can capitalize on the strength and speed of construction allowed by the technology creates the best opportunity for wood product market growth. One such market is the Department of Defense (DoD), representing an estimated 148 million board feet of additional lumber production. Wood products have been significantly under-represented in the DoD construction market because of their perceived performance in blast conditions. The objectives of this project are to develop a design methodology and to demonstrate performance for exterior bearing CLT walls used in buildings subject to force protection requirements. This methodology should be published by U.S. Army Corp of Engineers – Protective Design Center to be used by engineers for designing CLT elements to withstand blast loads as determined by code requirements and specific project conditions.
Resource Link
Less detail

Solution for Mid-Rise Wood Construction: Full-Scale Standard Fire Resistance Tests of Wall Assemblies for Use in Lower Storeys of Mid-Rise Buildings

https://research.thinkwood.com/en/permalink/catalogue346
Year of Publication
2014
Topic
Design and Systems
Fire
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Walls
Author
Lafrance, Pier-Simon
Berzins, Robert
Leroux, Patrice
Su, Joseph
Lougheed, Gary
Bénichou, Noureddine
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Walls
Topic
Design and Systems
Fire
Keywords
Mid-Rise
Full Scale
Language
English
Research Status
Complete
Summary
A research project, Wood and Wood-Hybrid Midrise Buildings, was undertaken to develop information to be used as the basis for alternative/acceptable solutions for mid-rise construction using wood structural elements. The effectiveness of the encapsulation approach in limiting the involvement of wood structural materials in fires was demonstrated in this research project through bench-, intermediate- and full-scale fire experiments. These results for encapsulated lightweight wood-frame (LWF) systems and encapsulated cross-laminated timber (CLT) systems are documented in a series of reports [3, 4, 5, 6]. In addition to developing the encapsulation approach for protecting the wood structural materials to meet the above code intent, research was undertaken to examine standard fire resistance of encapsulated wood structural assemblies for use in mid-rise wood/timber buildings. One of the major differences between structural LWF assemblies used in mid-rise wood buildings (5-6 storeys) and low-rise wood buildings (= 4 stories) is the wall assemblies for the lower storeys. For mid-rise wood buildings, loadbearing wall assemblies on the lower storeys have to be designed to resist higher axial loads due to the self-weight of the upper storeys, which often result in the need for larger-size stud members and/or a greater number of studs, and higher lateral loads in case of seismic events or wind loads, which often requires the use of wood shear panels within the wall assembly. These wall assemblies very often will need to meet standard fire resistance requirements, and therefore, information regarding their standard fire-resistance ratings should be developed. This report documents the results of fullscale furnace tests conducted to develop standard fire-resistance ratings of encapsulated LWF assemblies for use in mid-rise applications.
Online Access
Free
Resource Link
Less detail

Deconstructable Hybrid Connections for the Next Generation of Prefabricated Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2809
Year of Publication
2021
Topic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Floors
Hybrid Building Systems
Shear Walls
Author
Shulman, Samuel
Loss, Cristiano
Organization
University of British Columbia
Year of Publication
2021
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Floors
Hybrid Building Systems
Shear Walls
Topic
Connections
Keywords
Steel Rods
Epoxy
Push-Out-Shear Tests
Prefabrication
Disassembly
Reuse
Language
English
Research Status
Complete
Summary
Timber has been used for building construction for centuries, until the industrial revolution, when it was often replaced by steel and concrete or confined to low-rise housings. In the last thirty years however, thanks to the development of mass timber products and new global interest in sustainability, timber has begun to make a resurgence in the building industry. As building codes and public perception continues to change, the demand for taller and higher-performance timber buildings will only grow. Thus, a need exists for new construction technology appropriate for taller mass timber construction, as well as for fabrication and deconstruction practices that respect wood’s inherent sustainable nature. With this in mind, this research program aims to develop a new hybrid shear connection for mass timber buildings that allows for easy construction, deconstruction, and reuse of the structural elements. This report includes results of Phase 1, which focused on connections consisting of partially threaded 20M and 24M steel rods bonded into pockets formed in CLT and surrounded by thick crowns of high-strength three-component epoxy-based grout. A total of 168 specimens were designed and fabricated, and push-out shear tests carried out with a displacement-controlled monotonic loading protocol. Strength and stiffness values were assessed and effective failure modes in specimens identified. These latter, along with the recorded load-deformation curves, indicate that it is possible to develop mechanics-based design models and design formulas akin to those already used for typical dowel-type fastener timber connections. Additionally, the specimens were easily fabricated in the lab and quickly fastened to the test jig by means of nuts and washers, suggested such connections have a strong potential for prefabrication, disassembly, and reuse.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.